|
import os |
|
import gradio as gr |
|
import PyPDF2 |
|
import torch |
|
import weaviate |
|
from transformers import AutoTokenizer, AutoModel |
|
from weaviate.classes.init import Auth |
|
import cohere |
|
|
|
|
|
WEAVIATE_URL = "mdw2dtjnrecv59mmqj8wg.c0.asia-southeast1.gcp.weaviate.cloud" |
|
WEAVIATE_API_KEY = "NElkM2V5dDBVaHQ3VWEyV19PUVdFTWl3eEI3aTlLYnVZTVpnencva2dSUUt2aWR6SHg3aFY3Y0hVMVJVPV92MjAw" |
|
COHERE_API_KEY = "LEvCVeZkqZMW1aLYjxDqlstCzWi4Cvlt9PiysqT8" |
|
|
|
|
|
client = weaviate.connect_to_weaviate_cloud( |
|
cluster_url=WEAVIATE_URL, |
|
auth_credentials=Auth.api_key(WEAVIATE_API_KEY), |
|
headers={"X-Cohere-Api-Key": COHERE_API_KEY} |
|
) |
|
cohere_client = cohere.Client(COHERE_API_KEY) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') |
|
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2') |
|
|
|
|
|
def load_pdf(file): |
|
"""Extract text from a PDF file.""" |
|
reader = PyPDF2.PdfReader(file) |
|
return ''.join([page.extract_text() for page in reader.pages if page.extract_text()]) |
|
|
|
def get_embeddings(text): |
|
"""Compute mean-pooled embeddings using a transformer.""" |
|
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) |
|
with torch.no_grad(): |
|
embeddings = model(**inputs).last_hidden_state.mean(dim=1).squeeze().cpu().numpy() |
|
return embeddings |
|
|
|
def upload_document_chunks(chunks): |
|
"""Insert document chunks into Weaviate.""" |
|
try: |
|
doc_collection = client.collections.get("Document") |
|
except Exception as e: |
|
raise RuntimeError("β Collection 'Document' not found. Make sure it's defined in your Weaviate schema.") from e |
|
|
|
for chunk in chunks: |
|
try: |
|
embedding = get_embeddings(chunk) |
|
doc_collection.data.insert( |
|
properties={"content": chunk}, |
|
vector=embedding.tolist() |
|
) |
|
except Exception as e: |
|
print(f"β οΈ Skipped chunk due to error: {e}") |
|
|
|
def query_answer(query): |
|
"""Query Weaviate for top relevant document chunks.""" |
|
query_embedding = get_embeddings(query) |
|
try: |
|
results = client.collections.get("Document").query.near_vector( |
|
near_vector=query_embedding.tolist(), |
|
limit=3 |
|
) |
|
return results.objects |
|
except Exception as e: |
|
print(f"β οΈ Query error: {e}") |
|
return [] |
|
|
|
def generate_response(context, query): |
|
"""Generate a natural language response using Cohere.""" |
|
response = cohere_client.generate( |
|
model='command', |
|
prompt=f"Context: {context}\n\nQuestion: {query}\nAnswer:", |
|
max_tokens=100 |
|
) |
|
return response.generations[0].text.strip() |
|
|
|
def qa_pipeline(pdf_file, query): |
|
"""Main QA pipeline.""" |
|
try: |
|
document_text = load_pdf(pdf_file) |
|
document_chunks = [document_text[i:i+500] for i in range(0, len(document_text), 500)] |
|
|
|
upload_document_chunks(document_chunks) |
|
top_docs = query_answer(query) |
|
context = ' '.join([doc.properties['content'] for doc in top_docs if 'content' in doc.properties]) |
|
answer = generate_response(context, query) |
|
|
|
return str(context), str(answer) |
|
finally: |
|
client.close() |
|
|
|
|
|
with gr.Blocks(theme="compact") as demo: |
|
gr.Markdown(""" |
|
<div style="text-align: center; font-size: 28px; font-weight: bold; margin-bottom: 20px; color: #2D3748;"> |
|
π Interactive QA Bot π |
|
</div> |
|
<p style="text-align: center; font-size: 16px; color: #4A5568;"> |
|
Upload a PDF document, ask questions, and receive answers based on the document content. |
|
</p> |
|
<hr style="border: 1px solid #CBD5E0; margin: 20px 0;"> |
|
""") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
pdf_input = gr.File(label="π Upload PDF", file_types=[".pdf"]) |
|
query_input = gr.Textbox(label="β Ask a Question", placeholder="Enter your question here...") |
|
submit_button = gr.Button("π Submit") |
|
|
|
with gr.Column(scale=2): |
|
doc_segments_output = gr.Textbox(label="π Retrieved Document Segments", lines=10) |
|
answer_output = gr.Textbox(label="π¬ Answer", lines=3) |
|
|
|
submit_button.click( |
|
fn=qa_pipeline, |
|
inputs=[pdf_input, query_input], |
|
outputs=[doc_segments_output, answer_output] |
|
) |
|
|
|
gr.Markdown(""" |
|
<style> |
|
body { |
|
background-color: #EDF2F7; |
|
} |
|
input[type="file"] { |
|
background-color: #3182CE; |
|
color: white; |
|
padding: 8px; |
|
border-radius: 5px; |
|
} |
|
button { |
|
background-color: #3182CE; |
|
color: white; |
|
padding: 10px; |
|
font-size: 16px; |
|
border-radius: 5px; |
|
cursor: pointer; |
|
} |
|
button:hover { |
|
background-color: #2B6CB0; |
|
} |
|
textarea { |
|
border: 2px solid #CBD5E0; |
|
border-radius: 8px; |
|
padding: 10px; |
|
background-color: #FAFAFA; |
|
} |
|
</style> |
|
""") |
|
|
|
demo.launch(share=True) |