File size: 5,325 Bytes
d37571a 4eb325f e47ba0e d37571a 67d953e 4eb325f d7086c2 d235fe0 d37571a 7f13670 d7086c2 42314b4 d37571a 4eb325f d37571a 4eb325f d7086c2 4eb325f d7086c2 d37571a d7086c2 d37571a 4eb325f d7086c2 4eb325f d7086c2 c50dda1 d7086c2 4eb325f d7086c2 4eb325f d7086c2 4eb325f d7086c2 4eb325f d37571a 4eb325f d7086c2 e0d703d d7086c2 e0d703d d7086c2 e0d703d 4eb325f e0d703d d7086c2 4eb325f d7086c2 40781f0 d7086c2 40781f0 9bcc9ed 40781f0 d7086c2 4eb325f 40781f0 c50dda1 40781f0 c50dda1 40781f0 e0d703d 4eb325f d7086c2 40781f0 d7086c2 40781f0 d7086c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import os
import gradio as gr
import PyPDF2
import torch
import weaviate
from transformers import AutoTokenizer, AutoModel
from weaviate.classes.init import Auth
import cohere
# --- Configuration ---
WEAVIATE_URL = "mdw2dtjnrecv59mmqj8wg.c0.asia-southeast1.gcp.weaviate.cloud"
WEAVIATE_API_KEY = "NElkM2V5dDBVaHQ3VWEyV19PUVdFTWl3eEI3aTlLYnVZTVpnencva2dSUUt2aWR6SHg3aFY3Y0hVMVJVPV92MjAw"
COHERE_API_KEY = "LEvCVeZkqZMW1aLYjxDqlstCzWi4Cvlt9PiysqT8"
# --- Initialize Clients ---
client = weaviate.connect_to_weaviate_cloud(
cluster_url=WEAVIATE_URL,
auth_credentials=Auth.api_key(WEAVIATE_API_KEY),
headers={"X-Cohere-Api-Key": COHERE_API_KEY}
)
cohere_client = cohere.Client(COHERE_API_KEY)
# --- Load Sentence Transformer ---
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
# --- Utility Functions ---
def load_pdf(file):
"""Extract text from a PDF file."""
reader = PyPDF2.PdfReader(file)
return ''.join([page.extract_text() for page in reader.pages if page.extract_text()])
def get_embeddings(text):
"""Compute mean-pooled embeddings using a transformer."""
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
embeddings = model(**inputs).last_hidden_state.mean(dim=1).squeeze().cpu().numpy()
return embeddings
def upload_document_chunks(chunks):
"""Insert document chunks into Weaviate."""
try:
doc_collection = client.collections.get("Document")
except Exception as e:
raise RuntimeError("β Collection 'Document' not found. Make sure it's defined in your Weaviate schema.") from e
for chunk in chunks:
try:
embedding = get_embeddings(chunk)
doc_collection.data.insert(
properties={"content": chunk},
vector=embedding.tolist()
)
except Exception as e:
print(f"β οΈ Skipped chunk due to error: {e}")
def query_answer(query):
"""Query Weaviate for top relevant document chunks."""
query_embedding = get_embeddings(query)
try:
results = client.collections.get("Document").query.near_vector(
near_vector=query_embedding.tolist(),
limit=3
)
return results.objects
except Exception as e:
print(f"β οΈ Query error: {e}")
return []
def generate_response(context, query):
"""Generate a natural language response using Cohere."""
response = cohere_client.generate(
model='command',
prompt=f"Context: {context}\n\nQuestion: {query}\nAnswer:",
max_tokens=100
)
return response.generations[0].text.strip()
def qa_pipeline(pdf_file, query):
"""Main QA pipeline."""
try:
document_text = load_pdf(pdf_file)
document_chunks = [document_text[i:i+500] for i in range(0, len(document_text), 500)]
upload_document_chunks(document_chunks)
top_docs = query_answer(query)
context = ' '.join([doc.properties['content'] for doc in top_docs if 'content' in doc.properties])
answer = generate_response(context, query)
return str(context), str(answer)
finally:
client.close()
# --- Gradio UI ---
with gr.Blocks(theme="compact") as demo:
gr.Markdown("""
<div style="text-align: center; font-size: 28px; font-weight: bold; margin-bottom: 20px; color: #2D3748;">
π Interactive QA Bot π
</div>
<p style="text-align: center; font-size: 16px; color: #4A5568;">
Upload a PDF document, ask questions, and receive answers based on the document content.
</p>
<hr style="border: 1px solid #CBD5E0; margin: 20px 0;">
""")
with gr.Row():
with gr.Column(scale=1):
pdf_input = gr.File(label="π Upload PDF", file_types=[".pdf"])
query_input = gr.Textbox(label="β Ask a Question", placeholder="Enter your question here...")
submit_button = gr.Button("π Submit")
with gr.Column(scale=2):
doc_segments_output = gr.Textbox(label="π Retrieved Document Segments", lines=10)
answer_output = gr.Textbox(label="π¬ Answer", lines=3)
submit_button.click(
fn=qa_pipeline,
inputs=[pdf_input, query_input],
outputs=[doc_segments_output, answer_output]
)
gr.Markdown("""
<style>
body {
background-color: #EDF2F7;
}
input[type="file"] {
background-color: #3182CE;
color: white;
padding: 8px;
border-radius: 5px;
}
button {
background-color: #3182CE;
color: white;
padding: 10px;
font-size: 16px;
border-radius: 5px;
cursor: pointer;
}
button:hover {
background-color: #2B6CB0;
}
textarea {
border: 2px solid #CBD5E0;
border-radius: 8px;
padding: 10px;
background-color: #FAFAFA;
}
</style>
""")
demo.launch(share=True) |