dedication / app.py
gaur3009's picture
Update app.py
b5063e0 verified
import torch
import datetime
from typing import List, Dict, Optional
from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler
from PIL import Image
import gradio as gr
from transformers import pipeline as hf_pipeline
class StableDiffusionAgent:
def __init__(self, config: Optional[Dict] = None):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.default_config = {
"model": "stabilityai/stable-diffusion-2-1",
"safety_checker": True,
"max_resolution": 1024,
"art_styles": ["realistic", "anime", "cyberpunk", "watercolor", "pixel-art"],
"default_style": "realistic",
"memory_size": 10,
"prompt_enhancer": True
}
self.config = {**self.default_config, **(config or {})}
self._initialize_models()
self.memory = []
self.user_profiles = {}
self.current_style = self.config["default_style"]
def _initialize_models(self):
"""Load all required models"""
# Text-to-Image Pipeline
self.sd_pipeline = StableDiffusionPipeline.from_pretrained(
self.config["model"],
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
safety_checker=None if not self.config["safety_checker"] else None
).to(self.device)
self.sd_pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
self.sd_pipeline.scheduler.config
)
if self.device == "cuda":
self.sd_pipeline.enable_xformers_memory_efficient_attention()
self.sd_pipeline.enable_attention_slicing()
# Prompt Enhancement Model
if self.config["prompt_enhancer"]:
self.prompt_pipeline = hf_pipeline(
"text2text-generation",
model="microsoft/Promptist"
)
def _enhance_prompt(self, prompt: str) -> str:
"""Improve prompt using LLM"""
if self.config["prompt_enhancer"]:
try:
return self.prompt_pipeline(prompt, max_length=256)[0]["generated_text"]
except:
return prompt
return prompt
def _apply_style(self, prompt: str, style: str) -> str:
"""Apply artistic style to prompt"""
style_templates = {
"anime": "anime style, vibrant colors, detailed line art",
"cyberpunk": "neon lights, cyberpunk style, rainy night, futuristic",
"watercolor": "watercolor painting, soft edges, artistic",
"pixel-art": "8-bit pixel art, retro gaming style"
}
return f"{prompt}, {style_templates.get(style, '')}"
def generate(
self,
user_id: str,
prompt: str,
negative_prompt: str = "",
style: Optional[str] = None,
**kwargs
) -> Dict:
"""Main generation method with user context"""
# Get user preferences
user_prefs = self.user_profiles.get(user_id, {})
# Enhance prompt
enhanced_prompt = self._enhance_prompt(prompt)
# Apply style
style = style or user_prefs.get("style", self.current_style)
final_prompt = self._apply_style(enhanced_prompt, style)
# Generate image
results = self._generate_image(
prompt=final_prompt,
negative_prompt=negative_prompt,
**{**self._get_default_params(), **kwargs}
)
# Update memory and user profile
self._update_memory(user_id, prompt, results)
return {
"images": results["images"],
"metadata": {
"enhanced_prompt": enhanced_prompt,
"style": style,
"seed": results["seed"],
"timestamp": datetime.datetime.now().isoformat()
}
}
def _generate_image(self, **kwargs) -> Dict:
"""Low-level generation with safety checks"""
generator = torch.Generator(device=self.device)
seed = kwargs.pop("seed", None)
if seed is not None:
generator = generator.manual_seed(seed)
results = self.sd_pipeline(**kwargs, generator=generator)
# Filter NSFW content
safe_images = []
for i, img in enumerate(results.images):
if results.nsfw_content_detected and results.nsfw_content_detected[i]:
safe_images.append(self._create_black_image(kwargs["width"], kwargs["height"]))
else:
safe_images.append(img)
return {
"images": safe_images,
"seed": seed or generator.initial_seed()
}
def _update_memory(self, user_id: str, prompt: str, results: Dict):
"""Store generation history"""
self.memory.append({
"user_id": user_id,
"prompt": prompt,
"timestamp": datetime.datetime.now(),
"metadata": results["metadata"]
})
if len(self.memory) > self.config["memory_size"]:
self.memory.pop(0)
def _get_default_params(self):
return {
"height": 512,
"width": 512,
"num_images_per_prompt": 1,
"num_inference_steps": 50,
"guidance_scale": 7.5
}
def _create_black_image(self, width: int, height: int) -> Image.Image:
return Image.new("RGB", (width, height), (0, 0, 0))
# ----------- User Interaction Methods -----------
def set_style(self, user_id: str, style: str):
if style in self.config["art_styles"]:
self.user_profiles.setdefault(user_id, {})["style"] = style
return f"Style set to {style}"
return f"Invalid style. Available styles: {', '.join(self.config['art_styles'])}"
def get_history(self, user_id: str) -> List[Dict]:
return [entry for entry in self.memory if entry["user_id"] == user_id]
# Update the Gradio interface section as follows:
# ------------------ Gradio Interface ------------------
def create_web_interface(agent: StableDiffusionAgent):
css = """
.gradio-container {max-width: 900px!important}
.output-image img {box-shadow: 0 4px 8px rgba(0,0,0,0.1)}
"""
with gr.Blocks(css=css) as interface:
gr.Markdown("# 🎨 AI Art Generator Agent")
with gr.Row():
with gr.Column(scale=1):
user_id = gr.Textbox(label="User ID", placeholder="Enter unique identifier")
prompt = gr.Textbox(label="Prompt", lines=3)
negative_prompt = gr.Textbox(label="Negative Prompt")
style = gr.Dropdown(agent.config["art_styles"], label="Art Style")
generate_btn = gr.Button("Generate", variant="primary")
with gr.Column(scale=1):
output_image = gr.Image(label="Generated Art", elem_classes=["output-image"])
meta_info = gr.JSON(label="Generation Metadata")
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
steps = gr.Slider(10, 100, value=50, label="Steps")
guidance = gr.Slider(1.0, 20.0, value=7.5, label="Guidance Scale")
seed = gr.Number(label="Seed (optional)")
# Modified click handler
generate_btn.click(
fn=lambda user_id, prompt, negative_prompt, style, steps, guidance, seed:
agent.generate(
user_id=user_id,
prompt=prompt,
negative_prompt=negative_prompt,
style=style,
num_inference_steps=steps,
guidance_scale=guidance,
seed=seed
),
inputs=[user_id, prompt, negative_prompt, style, steps, guidance, seed],
outputs=[output_image, meta_info]
)
return interface
if __name__ == "__main__":
# Initialize agent
config = {
"prompt_enhancer": True,
"art_styles": ["realistic", "anime", "cyberpunk", "watercolor"]
}
agent = StableDiffusionAgent(config)
# Launch Gradio interface
interface = create_web_interface(agent)
interface.launch(server_port=7860, share=True)