Para-gen / app.py
gaurav0026's picture
Update app.py
ea87c49 verified
raw
history blame
8.58 kB
from transformers import T5ForConditionalGeneration, T5Tokenizer, AutoModel, AutoTokenizer
import torch
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import gradio as gr
from collections import Counter
import pandas as pd
# Load paraphrase model and tokenizer
model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_paraphraser')
tokenizer = T5Tokenizer.from_pretrained('t5-base', legacy=False) # Explicitly set legacy=False
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# Load Sentence-BERT model for semantic similarity calculation
embed_model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
embed_tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
embed_model = embed_model.to(device)
# Function to get sentence embeddings
def get_sentence_embedding(sentence):
inputs = embed_tokenizer(sentence, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
embeddings = embed_model(**inputs).last_hidden_state.mean(dim=1)
return embeddings
# Paraphrasing function
def paraphrase_sentence(sentence):
if not sentence.strip():
return "Please enter a valid sentence."
# Updated prompt for statement-like output
text = "rephrase as a statement: " + sentence
encoding = tokenizer.encode_plus(text, padding=False, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device)
beam_outputs = model.generate(
input_ids=input_ids,
attention_mask=attention_masks,
do_sample=True,
max_length=128,
top_k=40,
top_p=0.85,
early_stopping=True,
num_return_sequences=5
)
# Decode and format paraphrases with numbering
paraphrases = []
for i, line in enumerate(beam_outputs, 1):
paraphrase = tokenizer.decode(line, skip_special_tokens=True, clean_up_tokenization_spaces=True)
paraphrases.append(f"{i}. {paraphrase}")
return "\n".join(paraphrases)
# Precision, Recall, and Overall Accuracy Calculation
def calculate_precision_recall_accuracy(sentences):
total_similarity = 0
paraphrase_count = 0
total_precision = 0
total_recall = 0
for sentence in sentences:
paraphrases = paraphrase_sentence(sentence).split("\n")
# Get the original embedding and token counts
original_embedding = get_sentence_embedding(sentence)
original_tokens = Counter(sentence.lower().split())
for paraphrase in paraphrases:
if not paraphrase.strip():
continue
# Remove numbering before evaluation
paraphrase_text = paraphrase.split(". ", 1)[1] if ". " in paraphrase else paraphrase
paraphrase_embedding = get_sentence_embedding(paraphrase_text)
similarity = cosine_similarity(original_embedding.cpu(), paraphrase_embedding.cpu())[0][0]
total_similarity += similarity
# Calculate precision and recall based on token overlap
paraphrase_tokens = Counter(paraphrase_text.lower().split())
overlap = sum((paraphrase_tokens & original_tokens).values())
precision = overlap / sum(paraphrase_tokens.values()) if paraphrase_tokens else 0
recall = overlap / sum(original_tokens.values()) if original_tokens else 0
total_precision += precision
total_recall += recall
paraphrase_count += 1
# Calculate averages for accuracy, precision, and recall
overall_accuracy = (total_similarity / paraphrase_count) * 100 if paraphrase_count else 0
avg_precision = (total_precision / paraphrase_count) * 100 if paraphrase_count else 0
avg_recall = (total_recall / paraphrase_count) * 100 if paraphrase_count else 0
return (f"**Overall Model Accuracy (Semantic Similarity):** {overall_accuracy:.2f}%\n"
f"**Average Precision (Token Overlap):** {avg_precision:.2f}%\n"
f"**Average Recall (Token Overlap):** {avg_recall:.2f}%")
# Custom CSS for aesthetic design
custom_css = """
body {
background: linear-gradient(135deg, #e0e7ff, #c3dafe, #e0e7ff);
font-family: 'Inter', sans-serif;
}
.gradio-container {
max-width: 800px !important;
margin: auto;
padding: 20px;
background: white;
border-radius: 20px;
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.1);
}
h1 {
font-size: 2.5rem;
font-weight: 700;
background: linear-gradient(to right, #4f46e5, #7c3aed);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
text-align: center;
margin-bottom: 1rem;
}
textarea, input {
border: 2px solid #e0e7ff !important;
border-radius: 10px !important;
padding: 15px !important;
transition: all 0.3s ease !important;
}
textarea:hover, input:hover {
border-color: #a5b4fc !important;
box-shadow: 0 0 10px rgba(79, 70, 229, 0.2) !important;
}
textarea:focus, input:focus {
border-color: #4f46e5 !important;
box-shadow: 0 0 15px rgba(79, 70, 229, 0.3) !important;
}
button {
background: linear-gradient(to right, #4f46e5, #7c3aed) !important;
color: white !important;
font-weight: 600 !important;
padding: 12px 24px !important;
border-radius: 10px !important;
border: none !important;
transition: all 0.3s ease !important;
}
button:hover {
background: linear-gradient(to right, #4338ca, #6d28d9) !important;
transform: scale(1.05) !important;
box-shadow: 0 5px 15px rgba(79, 70, 229, 0.4) !important;
}
button:disabled {
background: linear-gradient(to right, #a3a3a3, #d1d5db) !important;
transform: none !important;
box-shadow: none !important;
}
.output-text {
background: #f9fafb !important;
border-radius: 10px !important;
padding: 15px !important;
border: 1px solid #e5e7eb !important;
transition: all 0.3s ease !important;
}
.output-text:hover {
background: #eff6ff !important;
border-color: #a5b4fc !important;
}
footer {
display: none !important;
}
"""
# Custom JavaScript for additional interactivity
custom_js = """
<script>
document.addEventListener('DOMContentLoaded', () => {
const textarea = document.querySelector('textarea');
const button = document.querySelector('button');
// Add typing animation effect
textarea.addEventListener('input', () => {
textarea.style.transform = 'scale(1.02)';
setTimeout(() => {
textarea.style.transform = 'scale(1)';
}, 200);
});
// Button click animation
button.addEventListener('click', () => {
if (!button.disabled) {
button.style.transform = 'scale(0.95)';
setTimeout(() => {
button.style.transform = 'scale(1)';
}, 200);
}
});
});
</script>
"""
# Define Gradio UI with enhanced aesthetics
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css, js=custom_js) as demo:
gr.Markdown(
"""
# PARA-GEN: Aesthetic Paraphraser
Enter a sentence below to generate five beautifully rephrased statements.
"""
)
with gr.Row():
with gr.Column(scale=3):
input_text = gr.Textbox(
label="Input Sentence",
placeholder="Type your sentence here...",
lines=4,
max_lines=4
)
paraphrase_button = gr.Button("Generate Paraphrases")
with gr.Column(scale=2):
output_text = gr.Textbox(
label="Paraphrased Results",
lines=10,
interactive=False
)
with gr.Accordion("Model Performance Metrics", open=False):
metrics_output = gr.Markdown()
# Define button click behavior
paraphrase_button.click(
fn=paraphrase_sentence,
inputs=input_text,
outputs=output_text
)
# Calculate and display metrics on load without _js
test_sentences = [
"The quick brown fox jumps over the lazy dog.",
"Artificial intelligence is transforming industries.",
"The weather is sunny and warm today.",
"He enjoys reading books on machine learning.",
"The stock market fluctuates daily due to various factors."
]
metrics_output.value = calculate_precision_recall_accuracy(test_sentences)
# Launch Gradio app
demo.launch(share=False)