gaurav0026 commited on
Commit
ea87c49
·
verified ·
1 Parent(s): 30ca17d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -8
app.py CHANGED
@@ -8,7 +8,7 @@ import pandas as pd
8
 
9
  # Load paraphrase model and tokenizer
10
  model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_paraphraser')
11
- tokenizer = T5Tokenizer.from_pretrained('t5-base')
12
 
13
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
  model = model.to(device)
@@ -232,7 +232,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css, js=custom_js) as demo:
232
  outputs=output_text
233
  )
234
 
235
- # Calculate and display metrics on load
236
  test_sentences = [
237
  "The quick brown fox jumps over the lazy dog.",
238
  "Artificial intelligence is transforming industries.",
@@ -240,12 +240,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css, js=custom_js) as demo:
240
  "He enjoys reading books on machine learning.",
241
  "The stock market fluctuates daily due to various factors."
242
  ]
243
- demo.load(
244
- fn=calculate_precision_recall_accuracy,
245
- inputs=None,
246
- outputs=metrics_output,
247
- _js="() => { return ['" + "', '".join(test_sentences) + "']; }"
248
- )
249
 
250
  # Launch Gradio app
251
  demo.launch(share=False)
 
8
 
9
  # Load paraphrase model and tokenizer
10
  model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_paraphraser')
11
+ tokenizer = T5Tokenizer.from_pretrained('t5-base', legacy=False) # Explicitly set legacy=False
12
 
13
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
  model = model.to(device)
 
232
  outputs=output_text
233
  )
234
 
235
+ # Calculate and display metrics on load without _js
236
  test_sentences = [
237
  "The quick brown fox jumps over the lazy dog.",
238
  "Artificial intelligence is transforming industries.",
 
240
  "He enjoys reading books on machine learning.",
241
  "The stock market fluctuates daily due to various factors."
242
  ]
243
+ metrics_output.value = calculate_precision_recall_accuracy(test_sentences)
 
 
 
 
 
244
 
245
  # Launch Gradio app
246
  demo.launch(share=False)