Spaces:
Sleeping
Sleeping
File size: 1,264 Bytes
2d05695 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import gradio as gr
from transformers import pipeline
# Load the summarization pipeline
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
def summarize_text(text, min_length, max_length):
if not text.strip():
return "Please enter some text to summarize."
summary = summarizer(text, min_length=min_length, max_length=max_length, do_sample=False)
return summary[0]['summary_text']
# Define the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Text Summarization using BART Model")
gr.Markdown("Enter a long piece of text below and adjust the sliders to set summary length, then click 'Summarize' to generate a concise summary.")
text_input = gr.Textbox(label="Input Text", placeholder="Enter your text here...", lines=10)
min_length_slider = gr.Slider(10, 50, value=10, label="Minimum Summary Length")
max_length_slider = gr.Slider(50, 150, value=100, label="Maximum Summary Length")
summarize_button = gr.Button("Summarize")
output_text = gr.Textbox(label="Summarized Text", lines=5, interactive=False)
summarize_button.click(summarize_text, inputs=[text_input, min_length_slider, max_length_slider], outputs=output_text)
# Launch the Gradio app
demo.launch() |