Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,20 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import json
|
5 |
import logging
|
6 |
import os
|
|
|
7 |
|
8 |
-
# Set up logging
|
9 |
-
logging.basicConfig(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
# Initialize FastAPI app
|
@@ -26,10 +34,10 @@ model_load_status = "not_loaded"
|
|
26 |
|
27 |
# Define model path and fallback
|
28 |
model_path = "/app/fine-tuned-construction-llm"
|
29 |
-
fallback_model = "distilgpt2"
|
30 |
|
31 |
-
#
|
32 |
-
def
|
33 |
global model, tokenizer, model_load_status
|
34 |
try:
|
35 |
if os.path.isdir(model_path):
|
@@ -38,7 +46,7 @@ def load_model():
|
|
38 |
tokenizer = AutoTokenizer.from_pretrained(model_path, local_files_only=True)
|
39 |
model_load_status = "local_model_loaded"
|
40 |
else:
|
41 |
-
logger.
|
42 |
model = AutoModelForCausalLM.from_pretrained(fallback_model)
|
43 |
tokenizer = AutoTokenizer.from_pretrained(fallback_model)
|
44 |
model_load_status = "fallback_model_loaded"
|
@@ -46,24 +54,25 @@ def load_model():
|
|
46 |
except Exception as e:
|
47 |
logger.error(f"Failed to load model or tokenizer: {str(e)}")
|
48 |
model_load_status = f"failed: {str(e)}"
|
49 |
-
# Do not raise an exception; allow the app to start
|
50 |
-
|
51 |
-
# Load model on startup
|
52 |
-
load_model()
|
53 |
|
|
|
54 |
@app.on_event("startup")
|
55 |
-
async def startup_event():
|
56 |
logger.info("FastAPI application started")
|
|
|
57 |
|
58 |
@app.get("/health")
|
59 |
async def health_check():
|
60 |
-
return {
|
|
|
|
|
|
|
61 |
|
62 |
@app.post("/generate_coaching")
|
63 |
async def generate_coaching(data: CoachingInput):
|
64 |
if model is None or tokenizer is None:
|
65 |
logger.error("Model or tokenizer not loaded")
|
66 |
-
raise HTTPException(status_code=503, detail="Model not loaded. Please
|
67 |
|
68 |
try:
|
69 |
# Prepare input text
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException, BackgroundTasks
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import json
|
5 |
import logging
|
6 |
import os
|
7 |
+
import asyncio
|
8 |
|
9 |
+
# Set up logging to both stdout and a file
|
10 |
+
logging.basicConfig(
|
11 |
+
level=logging.INFO,
|
12 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
13 |
+
handlers=[
|
14 |
+
logging.StreamHandler(), # Log to stdout
|
15 |
+
logging.FileHandler("/app/app.log") # Log to a file
|
16 |
+
]
|
17 |
+
)
|
18 |
logger = logging.getLogger(__name__)
|
19 |
|
20 |
# Initialize FastAPI app
|
|
|
34 |
|
35 |
# Define model path and fallback
|
36 |
model_path = "/app/fine-tuned-construction-llm"
|
37 |
+
fallback_model = "distilgpt2"
|
38 |
|
39 |
+
# Asynchronous function to load model in the background
|
40 |
+
async def load_model_background():
|
41 |
global model, tokenizer, model_load_status
|
42 |
try:
|
43 |
if os.path.isdir(model_path):
|
|
|
46 |
tokenizer = AutoTokenizer.from_pretrained(model_path, local_files_only=True)
|
47 |
model_load_status = "local_model_loaded"
|
48 |
else:
|
49 |
+
logger.info(f"Model directory not found: {model_path}. Using pre-trained model: {fallback_model}")
|
50 |
model = AutoModelForCausalLM.from_pretrained(fallback_model)
|
51 |
tokenizer = AutoTokenizer.from_pretrained(fallback_model)
|
52 |
model_load_status = "fallback_model_loaded"
|
|
|
54 |
except Exception as e:
|
55 |
logger.error(f"Failed to load model or tokenizer: {str(e)}")
|
56 |
model_load_status = f"failed: {str(e)}"
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# Startup event to initiate model loading in the background
|
59 |
@app.on_event("startup")
|
60 |
+
async def startup_event(background_tasks: BackgroundTasks):
|
61 |
logger.info("FastAPI application started")
|
62 |
+
background_tasks.add_task(load_model_background)
|
63 |
|
64 |
@app.get("/health")
|
65 |
async def health_check():
|
66 |
+
return {
|
67 |
+
"status": "healthy" if model_load_status in ["local_model_loaded", "fallback_model_loaded"] else "starting",
|
68 |
+
"model_load_status": model_load_status
|
69 |
+
}
|
70 |
|
71 |
@app.post("/generate_coaching")
|
72 |
async def generate_coaching(data: CoachingInput):
|
73 |
if model is None or tokenizer is None:
|
74 |
logger.error("Model or tokenizer not loaded")
|
75 |
+
raise HTTPException(status_code=503, detail="Model not loaded yet. Please try again later.")
|
76 |
|
77 |
try:
|
78 |
# Prepare input text
|