AISupervisorg / app.py
geethareddy's picture
Update app.py
39d22d4 verified
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from joblib import Memory
import datetime
# Initialize cache
cache_dir = "./cache"
memory = Memory(cache_dir, verbose=0)
# Load pre-trained model and tokenizer (allow online download)
model_name = "distilgpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Set pad_token_id to eos_token_id to avoid warnings
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = tokenizer.eos_token_id
# Define a prompt template (structured format)
PROMPT_TEMPLATE = """You are an AI coach for construction supervisors. Based on the following inputs, generate a daily checklist, focus suggestions, and a motivational quote. Format your response with clear labels as follows:
Checklist:
- Item 1
- Item 2
Suggestions:
- Suggestion 1
- Suggestion 2
Quote:
- Your motivational quote here
Now, generate the checklist, suggestions, and quote for the following inputs:
Inputs:
Role: {role}
Project: {project_id}
Milestones: {milestones}
Reflection: {reflection}
"""
# Cache reset check
last_reset = datetime.date.today()
def reset_cache_if_new_day():
global last_reset
today = datetime.date.today()
if today > last_reset:
memory.clear()
last_reset = today
# Cached generation function with improved parsing and context-aware fallbacks
@memory.cache
def generate_outputs(role, project_id, milestones, reflection):
reset_cache_if_new_day()
# Validate inputs
if not all([role, project_id, milestones, reflection]):
return "Error: All fields are required.", "", ""
# Create prompt
prompt = PROMPT_TEMPLATE.format(
role=role,
project_id=project_id,
milestones=milestones,
reflection=reflection
)
# Tokenize with attention_mask
inputs = tokenizer(
prompt,
return_tensors="pt",
max_length=512,
truncation=True,
padding=True,
return_attention_mask=True
)
# Generate with attention_mask
outputs = model.generate(
inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_length=1500,
num_return_sequences=1,
no_repeat_ngram_size=2,
do_sample=True,
top_p=0.9,
temperature=0.8,
pad_token_id=tokenizer.eos_token_id
)
# Decode generated text
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Parse the output using labels
checklist = "No checklist generated."
suggestions = "No suggestions generated."
quote = "No quote generated."
# Look for sections using labels
if "Checklist:" in generated_text:
checklist_start = generated_text.find("Checklist:") + len("Checklist:")
suggestions_start = generated_text.find("Suggestions:")
if suggestions_start == -1:
suggestions_start = len(generated_text)
checklist = generated_text[checklist_start:suggestions_start].strip()
if not checklist:
checklist = "No checklist generated."
if "Suggestions:" in generated_text:
suggestions_start = generated_text.find("Suggestions:") + len("Suggestions:")
quote_start = generated_text.find("Quote:")
if quote_start == -1:
quote_start = len(generated_text)
suggestions = generated_text[suggestions_start:quote_start].strip()
if not suggestions:
suggestions = "No suggestions generated."
if "Quote:" in generated_text:
quote_start = generated_text.find("Quote:") + len("Quote:")
quote = generated_text[quote_start:].strip()
if not quote:
quote = "No quote generated."
# Context-aware fallbacks based on inputs
if checklist == "No checklist generated.":
checklist_items = []
milestone_list = [m.strip() for m in milestones.split(",")]
for i, milestone in enumerate(milestone_list, 1):
checklist_items.append(f"- {milestone} by {8 + i*2} AM.")
checklist_items.append("- Check equipment status before end of day.")
checklist = "\n".join(checklist_items)
if suggestions == "No suggestions generated.":
suggestions_items = []
if "equipment issues" in reflection.lower():
suggestions_items.append("- Schedule equipment maintenance to avoid future delays.")
if "suppliers" in reflection.lower():
suggestions_items.append("- Set up a morning call with suppliers to confirm timelines.")
suggestions_items.append("- Brief the team on tomorrow’s goals during the daily huddle.")
suggestions = "\n".join(suggestions_items if suggestions_items else ["- Coordinate with the team.", "- Plan for contingencies."])
if quote == "No quote generated.":
quote = "- Keep building—every step forward counts!"
return checklist, suggestions, quote
# Gradio interface
def create_interface():
with gr.Blocks() as demo:
gr.Markdown("# Construction Supervisor AI Coach")
gr.Markdown("Enter details to generate a daily checklist, focus suggestions, and a motivational quote.")
with gr.Row():
role = gr.Dropdown(choices=["Supervisor", "Foreman", "Project Manager"], label="Role")
project_id = gr.Textbox(label="Project ID")
milestones = gr.Textbox(label="Milestones (comma-separated KPIs)")
reflection = gr.Textbox(label="Reflection Log", lines=5)
with gr.Row():
submit = gr.Button("Generate")
clear = gr.Button("Clear")
checklist_output = gr.Textbox(label="Daily Checklist")
suggestions_output = gr.Textbox(label="Focus Suggestions")
quote_output = gr.Textbox(label="Motivational Quote")
submit.click(
fn=generate_outputs,
inputs=[role, project_id, milestones, reflection],
outputs=[checklist_output, suggestions_output, quote_output]
)
clear.click(
fn=lambda: ("", "", "", ""),
inputs=None,
outputs=[role, project_id, milestones, reflection]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch()