File size: 8,830 Bytes
df97270
7d8ec5e
4bdf8dd
 
49702ec
5fc5e6a
 
 
 
19d8d8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4e3ea5
df97270
 
 
 
 
 
3dfd15f
df97270
 
 
 
 
 
 
 
 
 
 
c4e3ea5
5fc5e6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19d8d8c
5fc5e6a
19d8d8c
5fc5e6a
6ead281
b64c0fc
19d8d8c
 
 
 
 
 
b64c0fc
 
 
19d8d8c
 
 
 
 
b64c0fc
19d8d8c
 
 
 
 
 
 
 
 
6ead281
19d8d8c
6ead281
19d8d8c
 
49702ec
 
19d8d8c
49702ec
4e27730
f41a948
4e27730
 
 
c4fefad
74a72c4
19d8d8c
74a72c4
df97270
 
ef4e447
df97270
 
19d8d8c
ef4e447
df97270
 
49702ec
5fc5e6a
 
 
 
 
 
 
 
19d8d8c
 
 
 
92eae64
 
 
19d8d8c
 
6ead281
92eae64
 
b64c0fc
6ead281
92eae64
 
 
 
6ead281
 
b64c0fc
6ead281
 
 
19d8d8c
 
 
 
 
 
 
 
6ead281
 
 
 
b64c0fc
6ead281
 
 
 
 
 
 
 
 
 
 
 
19d8d8c
 
 
 
 
5fc5e6a
19d8d8c
 
 
 
 
49702ec
2552b80
4bdf8dd
49702ec
19d8d8c
2552b80
19d8d8c
 
2552b80
49702ec
6ead281
19d8d8c
c4e3ea5
 
5fc5e6a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
import gradio as gr
import torch
from datetime import datetime
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib import colors
from simple_salesforce import Salesforce
import os
from dotenv import load_dotenv
import base64
import io

# Load environment variables from .env file
load_dotenv()

# Salesforce credentials
SF_USERNAME = os.getenv('SF_USERNAME')
SF_PASSWORD = os.getenv('SF_PASSWORD')
SF_SECURITY_TOKEN = os.getenv('SF_SECURITY_TOKEN')

# Initialize Salesforce connection
try:
    sf = Salesforce(username=SF_USERNAME, password=SF_PASSWORD, security_token=SF_SECURITY_TOKEN)
except Exception as e:
    sf = None
    print(f"Failed to connect to Salesforce: {str(e)}")

# Load BLIP model and processor
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
model.eval()
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

# Inference function to generate captions dynamically based on image content
def generate_captions_from_image(image):
    if image.mode != "RGB":
        image = image.convert("RGB")
    
    # Preprocess the image and generate a caption
    inputs = processor(image, return_tensors="pt").to(device, torch.float16)
    output = model.generate(**inputs, max_new_tokens=50)
    caption = processor.decode(output[0], skip_special_tokens=True)
    
    return caption

# Function to save DPR text to a PDF file
def save_dpr_to_pdf(dpr_text, filename):
    try:
        # Create a PDF document
        doc = SimpleDocTemplate(filename, pagesize=letter)
        styles = getSampleStyleSheet()
        
        # Define custom styles
        title_style = ParagraphStyle(
            name='Title',
            fontSize=16,
            leading=20,
            alignment=1,  # Center
            spaceAfter=20,
            textColor=colors.black,
            fontName='Helvetica-Bold'
        )
        body_style = ParagraphStyle(
            name='Body',
            fontSize=12,
            leading=14,
            spaceAfter=10,
            textColor=colors.black,
            fontName='Helvetica'
        )
        
        # Build the PDF content
        flowables = []
        
        # Add title
        flowables.append(Paragraph("Daily Progress Report", title_style))
        
        # Split DPR text into lines and add as paragraphs
        for line in dpr_text.split('\n'):
            # Replace problematic characters for PDF
            line = line.replace('\u2019', "'").replace('\u2018', "'")
            if line.strip():
                flowables.append(Paragraph(line, body_style))
            else:
                flowables.append(Spacer(1, 12))
        
        # Build the PDF
        doc.build(flowables)
        return f"PDF saved successfully as {filename}", filename
    except Exception as e:
        return f"Error saving PDF: {str(e)}", None

# Function to upload a file to Salesforce as ContentVersion
def upload_file_to_salesforce(file_path, filename, sf_connection, file_type):
    try:
        # Read file content and encode in base64
        with open(file_path, 'rb') as f:
            file_content = f.read()
        file_content_b64 = base64.b64encode(file_content).decode('utf-8')
        
        # Set description based on file type
        description = "Daily Progress Report PDF" if file_type == "pdf" else "Site Image"
        
        # Create ContentVersion
        content_version = sf_connection.ContentVersion.create({
            'Title': filename,
            'PathOnClient': filename,
            'VersionData': file_content_b64,
            'Description': description
        })
        
        # Get ContentDocumentId
        content_version_id = content_version['id']
        content_document = sf_connection.query(
            f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'"
        )
        content_document_id = content_document['records'][0]['ContentDocumentId']
        
        return content_document_id, f"File {filename} uploaded successfully"
    except Exception as e:
        return None, f"Error uploading {filename} to Salesforce: {str(e)}"

# Function to generate the daily progress report (DPR), save as PDF, and upload to Salesforce
def generate_dpr(files):
    dpr_text = []
    captions = []
    current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    
    # Add header to the DPR
    dpr_text.append(f"Daily Progress Report\nGenerated on: {current_time}\n")
    
    # Process each uploaded file (image)
    for file in files:
        # Open the image from file path
        image = Image.open(file.name)
        
        if image.mode != "RGB":
            image = image.convert("RGB")
        
        # Dynamically generate a caption based on the image
        caption = generate_captions_from_image(image)
        captions.append(caption)
        
        # Generate DPR section for this image with dynamic caption
        dpr_section = f"\nImage: {file.name}\nDescription: {caption}\n"
        dpr_text.append(dpr_section)
    
    # Combine DPR text
    dpr_output = "\n".join(dpr_text)
    
    # Generate PDF filename with timestamp
    pdf_filename = f"DPR_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
    
    # Save DPR text to PDF
    pdf_result, pdf_filepath = save_dpr_to_pdf(dpr_output, pdf_filename)
    
    # Salesforce upload
    salesforce_result = ""
    pdf_content_document_id = None
    image_content_document_ids = []
    
    if sf and pdf_filepath:
        try:
            # Create Daily_Progress_Reports__c record
            report_description = "; ".join(captions)[:255]  # Concatenate captions, limit to 255 chars
            dpr_record = sf.Daily_Progress_Reports__c.create({

                'Report_Description__c': report_description
            })
            dpr_record_id = dpr_record['id']
            salesforce_result += f"Created Daily_Progress_Reports__c record with ID: {dpr_record_id}\n"
            
            # Upload PDF to Salesforce
            pdf_content_document_id, pdf_upload_result = upload_file_to_salesforce(
                pdf_filepath, pdf_filename, sf, "pdf"
            )
            salesforce_result += pdf_upload_result + "\n"
            
            # Link PDF to DPR record
            if pdf_content_document_id:
                sf.ContentDocumentLink.create({
                    'ContentDocumentId': pdf_content_document_id,
                    'LinkedEntityId': dpr_record_id,
                    'ShareType': 'V'
                })
            
            # Upload images to Salesforce
            for file in files:
                image_filename = os.path.basename(file.name)
                image_content_document_id, image_upload_result = upload_file_to_salesforce(
                    file.name, image_filename, sf, "image"
                )
                if image_content_document_id:
                    image_content_document_ids.append(image_content_document_id)
                salesforce_result += image_upload_result + "\n"
                
                # Link image to DPR record
                if image_content_document_id:
                    sf.ContentDocumentLink.create({
                        'ContentDocumentId': image_content_document_id,
                        'LinkedEntityId': dpr_record_id,
                        'ShareType': 'V'
                    })
            
        except Exception as e:
            salesforce_result += f"Error interacting with Salesforce: {str(e)}\n"
    else:
        salesforce_result = "Salesforce connection not available or PDF generation failed.\n"
    
    # Return DPR text, PDF file, and Salesforce upload status
    return (
        dpr_output + f"\n\n{pdf_result}\n\nSalesforce Upload Status:\n{salesforce_result}",
        pdf_filepath
    )

# Gradio interface for uploading multiple files, displaying DPR, and downloading PDF
iface = gr.Interface(
    fn=generate_dpr,
    inputs=gr.Files(type="filepath", label="Upload Site Photos"),
    outputs=[
        gr.Textbox(label="Daily Progress Report"),
        gr.File(label="Download PDF")
    ],
    title="Daily Progress Report Generator",
    description="Upload up to 10 site photos. The AI model will generate a text-based Daily Progress Report (DPR), save it as a PDF, and upload the PDF and images to Salesforce under Daily_Progress_Reports__c in the Files related list. Download the PDF locally if needed.",
    allow_flagging="never"
)

if __name__ == "__main__":
    iface.launch()