Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, File, UploadFile | |
import requests | |
from transformers import BlipProcessor, BlipForConditionalGeneration | |
from PIL import Image | |
import gradio as gr | |
import torch | |
from datetime import datetime | |
from reportlab.lib.pagesizes import letter | |
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as PDFImage | |
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle | |
from reportlab.lib import colors | |
from simple_salesforce import Salesforce | |
import os | |
from dotenv import load_dotenv | |
import base64 | |
import io | |
import concurrent.futures | |
# Load environment variables from .env file | |
load_dotenv() | |
app = FastAPI() | |
# Salesforce credentials | |
SF_USERNAME = os.getenv('SF_USERNAME') | |
SF_PASSWORD = os.getenv('SF_PASSWORD') | |
SF_SECURITY_TOKEN = os.getenv('SF_SECURITY_TOKEN') | |
# Initialize Salesforce connection | |
try: | |
sf = Salesforce(username=SF_USERNAME, password=SF_PASSWORD, security_token=SF_SECURITY_TOKEN) | |
except Exception as e: | |
sf = None | |
print(f"Failed to connect to Salesforce: {str(e)}") | |
# Load BLIP model and processor | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") | |
model.eval() | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
# FastAPI endpoint to handle image upload and caption generation | |
async def predict(image: UploadFile = File(...)): | |
try: | |
# Read the image from the request | |
image_bytes = await image.read() | |
image = Image.open(BytesIO(image_bytes)) | |
# Generate caption from the image | |
caption = generate_captions_from_image(image) | |
return {"caption": caption} | |
except Exception as e: | |
return {"error": str(e)} | |
# Inference function to generate captions dynamically based on image content | |
def generate_captions_from_image(image): | |
if image.mode != "RGB": | |
image = image.convert("RGB") | |
# Resize image for faster processing | |
image = image.resize((640, 640)) | |
# Preprocess the image and generate a caption | |
inputs = processor(image, return_tensors="pt").to(device, torch.float16) | |
output = model.generate(**inputs, max_new_tokens=50) | |
caption = processor.decode(output[0], skip_special_tokens=True) | |
return caption | |
# Function to save DPR text to a PDF file | |
def save_dpr_to_pdf(dpr_text, image_paths, captions, filename): | |
try: | |
# Create a PDF document | |
doc = SimpleDocTemplate(filename, pagesize=letter) | |
styles = getSampleStyleSheet() | |
# Define custom styles | |
title_style = ParagraphStyle( | |
name='Title', | |
fontSize=16, | |
leading=20, | |
alignment=1, # Center | |
spaceAfter=20, | |
textColor=colors.black, | |
fontName='Helvetica-Bold' | |
) | |
body_style = ParagraphStyle( | |
name='Body', | |
fontSize=12, | |
leading=14, | |
spaceAfter=10, | |
textColor=colors.black, | |
fontName='Helvetica' | |
) | |
# Build the PDF content | |
flowables = [] | |
# Add title | |
flowables.append(Paragraph("Daily Progress Report", title_style)) | |
# Split DPR text into lines and add as paragraphs (excluding descriptions for images) | |
for line in dpr_text.split('\n'): | |
# Replace problematic characters for PDF | |
line = line.replace('\u2019', "'").replace('\u2018', "'") | |
if line.strip(): | |
flowables.append(Paragraph(line, body_style)) | |
else: | |
flowables.append(Spacer(1, 12)) | |
# Add images and captions in the correct order (no need to add description to dpr_text again) | |
for img_path, caption in zip(image_paths, captions): | |
try: | |
# Add image first | |
img = PDFImage(img_path, width=200, height=150) # Adjust image size if needed | |
flowables.append(img) | |
# Add description below the image | |
description = f"Description: {caption}" | |
flowables.append(Paragraph(description, body_style)) | |
flowables.append(Spacer(1, 12)) # Add some space between images | |
except Exception as e: | |
flowables.append(Paragraph(f"Error loading image: {str(e)}", body_style)) | |
# Build the PDF | |
doc.build(flowables) | |
return f"PDF saved successfully as {filename}", filename | |
except Exception as e: | |
return f"Error saving PDF: {str(e)}", None | |
# Function to upload a file to Salesforce as ContentVersion | |
def upload_file_to_salesforce(file_path, filename, sf_connection, file_type): | |
try: | |
# Read file content and encode in base64 | |
with open(file_path, 'rb') as f: | |
file_content = f.read() | |
file_content_b64 = base64.b64encode(file_content).decode('utf-8') | |
# Set description based on file type | |
description = "Daily Progress Report PDF" if file_type == "pdf" else "Site Image" | |
# Create ContentVersion | |
content_version = sf_connection.ContentVersion.create({ | |
'Title': filename, | |
'PathOnClient': filename, | |
'VersionData': file_content_b64, | |
'Description': description | |
}) | |
# Get ContentDocumentId | |
content_version_id = content_version['id'] | |
content_document = sf_connection.query( | |
f"SELECT ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'" | |
) | |
content_document_id = content_document['records'][0]['ContentDocumentId'] | |
# Generate a valid Salesforce URL for the ContentDocument | |
content_document_url = f"https://{sf_connection.sf_instance}.salesforce.com/{content_document_id}" | |
# Ensure the link is valid | |
return content_document_id, content_document_url, f"File {filename} uploaded successfully" | |
except Exception as e: | |
return None, None, f"Error uploading {filename} to Salesforce: {str(e)}" | |
# Function to generate the daily progress report (DPR), save as PDF, and upload to Salesforce | |
def generate_dpr(files): | |
dpr_text = [] | |
captions = [] | |
image_paths = [] | |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
# Add header to the DPR | |
dpr_text.append(f"Daily Progress Report\nGenerated on: {current_time}\n") | |
# Process images in parallel for faster performance | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
results = list(executor.map(lambda file: generate_captions_from_image(Image.open(file.name)), files)) | |
for i, file in enumerate(files): | |
caption = results[i] | |
captions.append(caption) | |
# Generate DPR section for this image with dynamic caption | |
dpr_section = f"\nImage: {file.name}\nDescription: {caption}\n" | |
# Remove the description from the dpr_text section | |
# No need to add it again as the image and caption will be inserted in the PDF | |
dpr_text.append(dpr_section) | |
# Save image path for embedding in the report | |
image_paths.append(file.name) | |
# Combine DPR text (no redundant description here) | |
dpr_output = "\n".join(dpr_text) | |
# Generate PDF filename with timestamp | |
pdf_filename = f"DPR_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf" | |
# Save DPR text to PDF | |
pdf_result, pdf_filepath = save_dpr_to_pdf(dpr_output, image_paths, captions, pdf_filename) | |
# Salesforce upload | |
salesforce_result = "" | |
pdf_content_document_id = None | |
pdf_url = None | |
image_content_document_ids = [] | |
if sf and pdf_filepath: | |
try: | |
# Create Daily_Progress_Reports__c record | |
report_description = "; ".join(captions)[:255] # Concatenate captions, limit to 255 chars | |
dpr_record = sf.Daily_Progress_Reports__c.create({ | |
'Detected_Activities__c': report_description # Store in Detected_Activities__c field | |
}) | |
dpr_record_id = dpr_record['id'] | |
salesforce_result += f"Created Daily_Progress_Reports__c record with ID: {dpr_record_id}\n" | |
# Upload PDF to Salesforce | |
pdf_content_document_id, pdf_url, pdf_upload_result = upload_file_to_salesforce( | |
pdf_filepath, pdf_filename, sf, "pdf" | |
) | |
salesforce_result += pdf_upload_result + "\n" | |
# Link PDF to DPR record | |
if pdf_content_document_id: | |
sf.ContentDocumentLink.create({ | |
'ContentDocumentId': pdf_content_document_id, | |
'LinkedEntityId': dpr_record_id, | |
'ShareType': 'V' | |
}) | |
# Update the DPR record with the PDF URL | |
if pdf_url: | |
sf.Daily_Progress_Reports__c.update(dpr_record_id, { | |
'PDF_URL__c': pdf_url # Storing the PDF URL correctly | |
}) | |
salesforce_result += f"Updated PDF URL for record ID {dpr_record_id}\n" | |
# Upload images to Salesforce and create Site_Images__c records | |
for file in files: | |
image_filename = os.path.basename(file.name) | |
image_content_document_id, image_upload_result = upload_file_to_salesforce( | |
file.name, image_filename, sf, "image" | |
) | |
if image_content_document_id: | |
image_content_document_ids.append(image_content_document_id) | |
# Create Site_Images__c record and link to DPR | |
site_image_record = sf.Site_Images__c.create({ | |
'Image__c': image_content_document_id, | |
'Related_Report__c': dpr_record_id # Link image to DPR record | |
}) | |
salesforce_result += image_upload_result + "\n" | |
# Link image to DPR record | |
if image_content_document_id: | |
sf.ContentDocumentLink.create({ | |
'ContentDocumentId': image_content_document_id, | |
'LinkedEntityId': dpr_record_id, | |
'ShareType': 'V' | |
}) | |
except Exception as e: | |
salesforce_result += f"Error interacting with Salesforce: {str(e)}\n" | |
else: | |
salesforce_result = "Salesforce connection not available or PDF generation failed.\n" | |
# Return DPR text, PDF file, and Salesforce upload status | |
return ( | |
dpr_output + f"\n\n{pdf_result}\n\nSalesforce Upload Status:\n{salesforce_result}", | |
pdf_filepath | |
) | |
# Gradio interface for uploading multiple files, displaying DPR, and downloading PDF | |
iface = gr.Interface( | |
fn=generate_dpr, | |
inputs=gr.Files(type="filepath", label="Upload Site Photos"), | |
outputs=[ | |
gr.Textbox(label="Daily Progress Report"), | |
gr.File(label="Download PDF") | |
], | |
title="Daily Progress Report Generator", | |
description="Upload up to 10 site photos. The AI model will generate a text-based Daily Progress Report (DPR), save it as a PDF, and upload the PDF and images to Salesforce under Daily_Progress_Reports__c in the Files related list. Download the PDF locally if needed.", | |
allow_flagging="never" | |
) | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=8000) | |