Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
1 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
2 |
from PIL import Image
|
3 |
import gradio as gr
|
@@ -17,6 +20,9 @@ import concurrent.futures
|
|
17 |
# Load environment variables from .env file
|
18 |
load_dotenv()
|
19 |
|
|
|
|
|
|
|
20 |
# Salesforce credentials
|
21 |
SF_USERNAME = os.getenv('SF_USERNAME')
|
22 |
SF_PASSWORD = os.getenv('SF_PASSWORD')
|
@@ -36,6 +42,22 @@ model.eval()
|
|
36 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
37 |
model.to(device)
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
# Inference function to generate captions dynamically based on image content
|
40 |
def generate_captions_from_image(image):
|
41 |
if image.mode != "RGB":
|
@@ -267,4 +289,6 @@ iface = gr.Interface(
|
|
267 |
)
|
268 |
|
269 |
if __name__ == "__main__":
|
270 |
-
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, File, UploadFile
|
2 |
+
import requests
|
3 |
+
|
4 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
5 |
from PIL import Image
|
6 |
import gradio as gr
|
|
|
20 |
# Load environment variables from .env file
|
21 |
load_dotenv()
|
22 |
|
23 |
+
app = FastAPI()
|
24 |
+
|
25 |
+
|
26 |
# Salesforce credentials
|
27 |
SF_USERNAME = os.getenv('SF_USERNAME')
|
28 |
SF_PASSWORD = os.getenv('SF_PASSWORD')
|
|
|
42 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
43 |
model.to(device)
|
44 |
|
45 |
+
|
46 |
+
# FastAPI endpoint to handle image upload and caption generation
|
47 |
+
@app.post("/predict/")
|
48 |
+
async def predict(image: UploadFile = File(...)):
|
49 |
+
try:
|
50 |
+
# Read the image from the request
|
51 |
+
image_bytes = await image.read()
|
52 |
+
image = Image.open(BytesIO(image_bytes))
|
53 |
+
|
54 |
+
# Generate caption from the image
|
55 |
+
caption = generate_captions_from_image(image)
|
56 |
+
return {"caption": caption}
|
57 |
+
except Exception as e:
|
58 |
+
return {"error": str(e)}
|
59 |
+
|
60 |
+
|
61 |
# Inference function to generate captions dynamically based on image content
|
62 |
def generate_captions_from_image(image):
|
63 |
if image.mode != "RGB":
|
|
|
289 |
)
|
290 |
|
291 |
if __name__ == "__main__":
|
292 |
+
import uvicorn
|
293 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
294 |
+
|