aicoaching / app.py
geethareddy's picture
Create app.py
2e49337 verified
raw
history blame
13.2 kB
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from simple_salesforce import Salesforce
import os
import base64
import datetime
from dotenv import load_dotenv
from fpdf import FPDF
import shutil
import html
import io
import matplotlib.pyplot as plt
import numpy as np
# Load environment variables
load_dotenv()
# Required env vars check
required_env_vars = ['SF_USERNAME', 'SF_PASSWORD', 'SF_SECURITY_TOKEN']
missing_vars = [var for var in required_env_vars if not os.getenv(var)]
if missing_vars:
raise EnvironmentError(f"Missing required environment variables: {missing_vars}")
# Load model and tokenizer
model_name = "distilgpt2"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
model.config.pad_token_id = tokenizer.pad_token_id
# Function to generate progress chart
def show_dashboard_chart(start_date, end_date, tasks_completed):
completed_tasks = list(tasks_completed.values())
labels = list(tasks_completed.keys())
remaining_tasks = [5 - task for task in completed_tasks] # Assuming 5 tasks per date
# Create the bar chart with completed and remaining tasks
fig, ax = plt.subplots(figsize=(10, 6))
ax.bar(labels, completed_tasks, color='green', label="Completed")
ax.bar(labels, remaining_tasks, bottom=completed_tasks, color='gray', label="Remaining")
ax.set_xlabel("Dates")
ax.set_ylabel("Task Progress")
ax.set_title(f"Task Completion Progress from {start_date} to {end_date}")
ax.legend()
plt.xticks(rotation=45)
chart_image = io.BytesIO()
plt.savefig(chart_image, format='png')
chart_image.seek(0)
return chart_image
# Function to get the data from Salesforce
def get_dashboard_data_from_salesforce(supervisor_name, project_id):
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
# Get the start and end date from Salesforce
query = sf.query(f"SELECT Start_Date__c, End_Date__c FROM Project__c WHERE Name = '{project_id}' LIMIT 1")
if query['totalSize'] == 0:
return "", "", None, "Project not found"
start_date_str = query['records'][0]['Start_Date__c']
end_date_str = query['records'][0]['End_Date__c']
# Convert the string dates to datetime objects
start_date = datetime.datetime.strptime(start_date_str, "%Y-%m-%d")
end_date = datetime.datetime.strptime(end_date_str, "%Y-%m-%d")
# Generate task dates and simulated completion data
task_dates = [start_date + datetime.timedelta(days=i) for i in range((end_date - start_date).days + 1)]
tasks_completed = {str(task_dates[i].date()): np.random.randint(1, 6) for i in range(len(task_dates))}
chart_image = show_dashboard_chart(start_date, end_date, tasks_completed)
return start_date, end_date, chart_image, f"Project {project_id} Task Progress"
except Exception as e:
return "", "", None, f"Error: {str(e)}"
# Clean text for PDF generation
def clean_text_for_pdf(text):
return html.unescape(text).encode('latin-1', 'replace').decode('latin-1')
# Function to save report as PDF
def save_report_as_pdf(role, supervisor_name, project_id, checklist, suggestions):
now = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
filename = f"report_{supervisor_name}_{project_id}_{now}.pdf"
file_path = f"./reports/{filename}"
os.makedirs("reports", exist_ok=True)
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", 'B', 14)
pdf.cell(200, 10, txt="Supervisor Daily Report", ln=True, align="C")
pdf.set_font("Arial", size=12)
pdf.cell(200, 10, txt=clean_text_for_pdf(f"Role: {role}"), ln=True)
pdf.cell(200, 10, txt=clean_text_for_pdf(f"Supervisor: {supervisor_name}"), ln=True)
pdf.cell(200, 10, txt=clean_text_for_pdf(f"Project ID: {project_id}"), ln=True)
pdf.ln(5)
pdf.set_font("Arial", 'B', 12)
pdf.cell(200, 10, txt="Daily Checklist", ln=True)
pdf.set_font("Arial", size=12)
for line in checklist.split("\n"):
pdf.multi_cell(0, 10, clean_text_for_pdf(line))
pdf.ln(5)
pdf.set_font("Arial", 'B', 12)
pdf.cell(200, 10, txt="Focus Suggestions", ln=True)
pdf.set_font("Arial", size=12)
for line in suggestions.split("\n"):
pdf.multi_cell(0, 10, clean_text_for_pdf(line))
pdf.output(file_path)
temp_pdf_path = "/tmp/" + os.path.basename(file_path)
shutil.copy(file_path, temp_pdf_path)
return temp_pdf_path, filename
# Function to get roles from Salesforce
def get_roles_from_salesforce():
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
result = sf.query("SELECT Role__c FROM Supervisor__c WHERE Role__c != NULL")
return list(set(record['Role__c'] for record in result['records']))
except Exception as e:
return []
# Function to get supervisor names based on role
def get_supervisor_name_by_role(role):
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
result = sf.query(f"SELECT Name FROM Supervisor__c WHERE Role__c = '{role}'")
return [record['Name'] for record in result['records']]
except Exception as e:
return []
# Function to get the project name for a supervisor
def get_projects_for_supervisor(supervisor_name):
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
result = sf.query(f"SELECT Id FROM Supervisor__c WHERE Name = '{supervisor_name}' LIMIT 1")
if result['totalSize'] == 0:
return ""
supervisor_id = result['records'][0]['Id']
project_result = sf.query(f"SELECT Name FROM Project__c WHERE Supervisor_ID__c = '{supervisor_id}' LIMIT 1")
return project_result['records'][0]['Name'] if project_result['totalSize'] > 0 else ""
except Exception as e:
return ""
# Function to generate daily checklist and focus suggestions
def generate_checklist_and_suggestions(role, project_id, milestones, reflection):
prompt = f"""
You are a supervisor assistant. Given the role {role}, project {project_id}, milestones {milestones}, and reflection log {reflection}, generate:
1. A Daily Checklist with clear and concise tasks.
2. Focus Suggestions based on concerns or keywords from the reflection log.
"""
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(inputs['input_ids'], max_length=200, num_return_sequences=1)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Split generated text into checklist and suggestions
parts = generated_text.split("\n")
checklist = "\n".join(parts[:len(parts)//2])
suggestions = "\n".join(parts[len(parts)//2:])
return checklist, suggestions
# Function to upload the report and create the Supervisor AI Coaching record in Salesforce
def upload_report_and_create_supervisor_ai_coaching(supervisor_name, project_id, checklist, suggestions, pdf_path, pdf_name):
try:
sf = Salesforce(
username=os.getenv('SF_USERNAME'),
password=os.getenv('SF_PASSWORD'),
security_token=os.getenv('SF_SECURITY_TOKEN'),
domain=os.getenv('SF_DOMAIN', 'login')
)
# Upload the PDF file to Salesforce as Content Version
with open(pdf_path, "rb") as f:
encoded = base64.b64encode(f.read()).decode()
content = sf.ContentVersion.create({
'Title': pdf_name,
'PathOnClient': pdf_name,
'VersionData': encoded
})
content_id = content['id']
download_url = f"https://{sf.sf_instance}/sfc/servlet.shepherd/version/download/{content_id}"
# Create a Supervisor AI Coaching record
query = sf.query(f"SELECT Id FROM Supervisor__c WHERE Name = '{supervisor_name}' LIMIT 1")
supervisor_id = query['records'][0]['Id'] if query['totalSize'] > 0 else None
if not supervisor_id:
return "Supervisor not found."
project_query = sf.query(f"SELECT Id FROM Project__c WHERE Name = '{project_id}' LIMIT 1")
project_id_sf = project_query['records'][0]['Id'] if project_query['totalSize'] > 0 else None
if not project_id_sf:
return "Project not found."
# Create Supervisor AI Coaching record with all necessary fields
sf.Supervisor_AI_Coaching__c.create({
'Project_ID__c': project_id_sf,
'Supervisor_ID__c': supervisor_id,
'Daily_Checklist__c': checklist,
'Suggested_Tips__c': suggestions,
'Download_Link__c': download_url
})
return "Supervisor AI Coaching record created and report uploaded successfully."
except Exception as e:
return f"Error: {str(e)}"
# Gradio interface
def create_interface():
roles = get_roles_from_salesforce() # Get roles from Salesforce dynamically
with gr.Blocks(theme="soft", css=".footer { display: none; }") as demo:
gr.Markdown("## 🧠 AI-Powered Supervisor Assistant")
with gr.Row():
role = gr.Dropdown(choices=roles, label="Role")
supervisor_name = gr.Dropdown(choices=[], label="Supervisor Name")
project_id = gr.Textbox(label="Project ID", interactive=False)
milestones = gr.Textbox(label="Milestones (comma-separated KPIs)")
reflection = gr.Textbox(label="Reflection Log", lines=4)
with gr.Row():
generate = gr.Button("Generate")
clear = gr.Button("Clear")
refresh = gr.Button("πŸ”„ Refresh Roles")
checklist_output = gr.Textbox(label="βœ… Daily Checklist")
suggestions_output = gr.Textbox(label="πŸ’‘ Focus Suggestions")
download_button = gr.File(label="⬇ Download Report")
pdf_link = gr.HTML()
role.change(fn=lambda r: gr.update(choices=get_supervisor_name_by_role(r)), inputs=role, outputs=supervisor_name)
supervisor_name.change(fn=get_projects_for_supervisor, inputs=supervisor_name, outputs=project_id)
def handle_generate(role, supervisor_name, project_id, milestones, reflection):
checklist, suggestions = generate_checklist_and_suggestions(role, project_id, milestones, reflection)
pdf_path, pdf_name = save_report_as_pdf(role, supervisor_name, project_id, checklist, suggestions)
supervisor_ai_coaching_response = upload_report_and_create_supervisor_ai_coaching(supervisor_name, project_id, checklist, suggestions, pdf_path, pdf_name)
return checklist, suggestions, pdf_path, pdf_name, supervisor_ai_coaching_response
generate.click(fn=handle_generate,
inputs=[role, supervisor_name, project_id, milestones, reflection],
outputs=[checklist_output, suggestions_output, download_button, pdf_link, gr.HTML()])
clear.click(fn=lambda: ("", "", "", "", ""),
inputs=None,
outputs=[role, supervisor_name, project_id, milestones, reflection])
refresh.click(fn=lambda: gr.update(choices=get_roles_from_salesforce()), outputs=role)
# Supervisor Dashboard Tab
with gr.Tab("πŸ“Š Supervisor Dashboard"):
dash_supervisor = gr.Textbox(label="Supervisor Name", placeholder="e.g., SUP-056")
dash_project = gr.Textbox(label="Project ID", placeholder="e.g., PROJ-078")
load_dash = gr.Button("πŸ“₯ Load Dashboard")
dash_output = gr.HTML()
def show_dashboard_html(sup_name, proj_id):
start_date, end_date, chart_image, chart_title = get_dashboard_data_from_salesforce(sup_name, proj_id)
if chart_image:
chart_html = f"<img src='data:image/png;base64,{base64.b64encode(chart_image.read()).decode()}' />"
return f"<h3>{chart_title}</h3><p>From {start_date} to {end_date}</p>{chart_html}"
else:
return f"Error: {chart_title}"
load_dash.click(fn=show_dashboard_html, inputs=[dash_supervisor, dash_project], outputs=dash_output)
return demo
if __name__ == "__main__":
app = create_interface()
app.launch()