File size: 5,639 Bytes
8ce7418
eb8e300
8ce7418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Install the required libraries
pip install transformers gradio Pillow requests
import os
import requests
from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer
from PIL import Image, ImageDraw
import io
import gradio as gr
import torch

# Detect if GPU is available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Load the MarianMT model and tokenizer for translation (Tamil to English)
model_name = "Helsinki-NLP/opus-mt-mul-en"
translation_model = MarianMTModel.from_pretrained(model_name).to(device)
translation_tokenizer = MarianTokenizer.from_pretrained(model_name)

# Load GPT-Neo for creative text generation
text_generation_model_name = "EleutherAI/gpt-neo-1.3B"
text_generation_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name).to(device)
text_generation_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name)

# Add padding token to GPT-Neo tokenizer if not present
if text_generation_tokenizer.pad_token is None:
    text_generation_tokenizer.add_special_tokens({'pad_token': '[PAD]'})

# Set your Hugging Face API key
os.environ['HF_API_KEY'] = 'Your_HF_TOKEN'  # Replace with your actual API key
api_key = os.getenv('HF_API_KEY')
if api_key is None:
    raise ValueError("Hugging Face API key is not set. Please set it in your environment.")

headers = {"Authorization": f"Bearer {api_key}"}

# Define the API URL for image generation (replace with actual model URL)
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell"  # Replace with a valid image generation model

# Query Hugging Face API to generate image with error handling
def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    if response.status_code != 200:
        print(f"Error: Received status code {response.status_code}")
        print(f"Response: {response.text}")
        return None
    return response.content

# Translate Tamil text to English
def translate_text(tamil_text):
    inputs = translation_tokenizer(tamil_text, return_tensors="pt", padding=True, truncation=True).to(device)
    translated_tokens = translation_model.generate(**inputs)
    translation = translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
    return translation

# Generate an image based on the translated text with error handling
def generate_image(prompt):
    image_bytes = query({"inputs": prompt})

    if image_bytes is None:
        # Return a blank image with error message
        error_img = Image.new('RGB', (300, 300), color=(255, 0, 0))
        d = ImageDraw.Draw(error_img)
        d.text((10, 150), "Image Generation Failed", fill=(255, 255, 255))
        return error_img

    try:
        image = Image.open(io.BytesIO(image_bytes))
        return image
    except Exception as e:
        print(f"Error: {e}")
        # Return an error image in case of failure
        error_img = Image.new('RGB', (300, 300), color=(255, 0, 0))
        d = ImageDraw.Draw(error_img)
        d.text((10, 150), "Invalid Image Data", fill=(255, 255, 255))
        return error_img

# Generate creative text based on the translated English text
def generate_creative_text(translated_text):
    inputs = text_generation_tokenizer(translated_text, return_tensors="pt", padding=True, truncation=True).to(device)
    generated_tokens = text_generation_model.generate(**inputs, max_length=100)
    creative_text = text_generation_tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
    return creative_text

# Function to handle the full workflow
def translate_generate_image_and_text(tamil_text):
    # Step 1: Translate Tamil to English
    translated_text = translate_text(tamil_text)

    # Step 2: Generate an image from the translated text
    image = generate_image(translated_text)

    # Step 3: Generate creative text from the translated text
    creative_text = generate_creative_text(translated_text)

    return translated_text, creative_text, image

# Create a visually appealing Gradio interface
css = """
#transart-title {
    font-size: 2.5em;
    font-weight: bold;
    color: #4CAF50;
    text-align: center;
    margin-bottom: 10px;
}
#transart-subtitle {
    font-size: 1.25em;
    text-align: center;
    color: #555555;
    margin-bottom: 20px;
}
body {
    background-color: #f0f0f5;
}
.gradio-container {
    font-family: 'Arial', sans-serif;
}
"""

# Custom HTML for title and subtitle (can be displayed in Markdown)
title_markdown = """
# <div id="transart-title">TransArt</div>
### <div id="transart-subtitle">Tamil to English Translation, Creative Text & Image Generation</div>
"""

# Gradio interface with customized layout and aesthetics
with gr.Blocks(css=css) as interface:
    gr.Markdown(title_markdown)  # Title and subtitle in Markdown
    with gr.Row():
        with gr.Column():
            tamil_input = gr.Textbox(label="Enter Tamil Text", placeholder="Type Tamil text here...", lines=3)  # Input for Tamil text
        with gr.Column():
            translated_output = gr.Textbox(label="Translated Text", interactive=False)        # Output for translated text
            creative_text_output = gr.Textbox(label="Creative Generated Text", interactive=False)  # Output for creative text
            generated_image_output = gr.Image(label="Generated Image")  # Output for generated image

    gr.Button("Generate").click(fn=translate_generate_image_and_text, inputs=tamil_input, outputs=[translated_output, creative_text_output, generated_image_output])

# Launch the Gradio app
interface.launch(debug=True, server_name="0.0.0.0")