Create Gradio_App.py
Browse files- Gradio_App.py +140 -0
Gradio_App.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Install the required libraries
|
2 |
+
!pip install transformers gradio Pillow requests
|
3 |
+
import os
|
4 |
+
import requests
|
5 |
+
from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer
|
6 |
+
from PIL import Image, ImageDraw
|
7 |
+
import io
|
8 |
+
import gradio as gr
|
9 |
+
import torch
|
10 |
+
|
11 |
+
# Detect if GPU is available
|
12 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
13 |
+
|
14 |
+
# Load the MarianMT model and tokenizer for translation (Tamil to English)
|
15 |
+
model_name = "Helsinki-NLP/opus-mt-mul-en"
|
16 |
+
translation_model = MarianMTModel.from_pretrained(model_name).to(device)
|
17 |
+
translation_tokenizer = MarianTokenizer.from_pretrained(model_name)
|
18 |
+
|
19 |
+
# Load GPT-Neo for creative text generation
|
20 |
+
text_generation_model_name = "EleutherAI/gpt-neo-1.3B"
|
21 |
+
text_generation_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name).to(device)
|
22 |
+
text_generation_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name)
|
23 |
+
|
24 |
+
# Add padding token to GPT-Neo tokenizer if not present
|
25 |
+
if text_generation_tokenizer.pad_token is None:
|
26 |
+
text_generation_tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
27 |
+
|
28 |
+
# Set your Hugging Face API key
|
29 |
+
os.environ['HF_API_KEY'] = 'Your_HF_TOKEN' # Replace with your actual API key
|
30 |
+
api_key = os.getenv('HF_API_KEY')
|
31 |
+
if api_key is None:
|
32 |
+
raise ValueError("Hugging Face API key is not set. Please set it in your environment.")
|
33 |
+
|
34 |
+
headers = {"Authorization": f"Bearer {api_key}"}
|
35 |
+
|
36 |
+
# Define the API URL for image generation (replace with actual model URL)
|
37 |
+
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-schnell" # Replace with a valid image generation model
|
38 |
+
|
39 |
+
# Query Hugging Face API to generate image with error handling
|
40 |
+
def query(payload):
|
41 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
42 |
+
if response.status_code != 200:
|
43 |
+
print(f"Error: Received status code {response.status_code}")
|
44 |
+
print(f"Response: {response.text}")
|
45 |
+
return None
|
46 |
+
return response.content
|
47 |
+
|
48 |
+
# Translate Tamil text to English
|
49 |
+
def translate_text(tamil_text):
|
50 |
+
inputs = translation_tokenizer(tamil_text, return_tensors="pt", padding=True, truncation=True).to(device)
|
51 |
+
translated_tokens = translation_model.generate(**inputs)
|
52 |
+
translation = translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
53 |
+
return translation
|
54 |
+
|
55 |
+
# Generate an image based on the translated text with error handling
|
56 |
+
def generate_image(prompt):
|
57 |
+
image_bytes = query({"inputs": prompt})
|
58 |
+
|
59 |
+
if image_bytes is None:
|
60 |
+
# Return a blank image with error message
|
61 |
+
error_img = Image.new('RGB', (300, 300), color=(255, 0, 0))
|
62 |
+
d = ImageDraw.Draw(error_img)
|
63 |
+
d.text((10, 150), "Image Generation Failed", fill=(255, 255, 255))
|
64 |
+
return error_img
|
65 |
+
|
66 |
+
try:
|
67 |
+
image = Image.open(io.BytesIO(image_bytes))
|
68 |
+
return image
|
69 |
+
except Exception as e:
|
70 |
+
print(f"Error: {e}")
|
71 |
+
# Return an error image in case of failure
|
72 |
+
error_img = Image.new('RGB', (300, 300), color=(255, 0, 0))
|
73 |
+
d = ImageDraw.Draw(error_img)
|
74 |
+
d.text((10, 150), "Invalid Image Data", fill=(255, 255, 255))
|
75 |
+
return error_img
|
76 |
+
|
77 |
+
# Generate creative text based on the translated English text
|
78 |
+
def generate_creative_text(translated_text):
|
79 |
+
inputs = text_generation_tokenizer(translated_text, return_tensors="pt", padding=True, truncation=True).to(device)
|
80 |
+
generated_tokens = text_generation_model.generate(**inputs, max_length=100)
|
81 |
+
creative_text = text_generation_tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
|
82 |
+
return creative_text
|
83 |
+
|
84 |
+
# Function to handle the full workflow
|
85 |
+
def translate_generate_image_and_text(tamil_text):
|
86 |
+
# Step 1: Translate Tamil to English
|
87 |
+
translated_text = translate_text(tamil_text)
|
88 |
+
|
89 |
+
# Step 2: Generate an image from the translated text
|
90 |
+
image = generate_image(translated_text)
|
91 |
+
|
92 |
+
# Step 3: Generate creative text from the translated text
|
93 |
+
creative_text = generate_creative_text(translated_text)
|
94 |
+
|
95 |
+
return translated_text, creative_text, image
|
96 |
+
|
97 |
+
# Create a visually appealing Gradio interface
|
98 |
+
css = """
|
99 |
+
#transart-title {
|
100 |
+
font-size: 2.5em;
|
101 |
+
font-weight: bold;
|
102 |
+
color: #4CAF50;
|
103 |
+
text-align: center;
|
104 |
+
margin-bottom: 10px;
|
105 |
+
}
|
106 |
+
#transart-subtitle {
|
107 |
+
font-size: 1.25em;
|
108 |
+
text-align: center;
|
109 |
+
color: #555555;
|
110 |
+
margin-bottom: 20px;
|
111 |
+
}
|
112 |
+
body {
|
113 |
+
background-color: #f0f0f5;
|
114 |
+
}
|
115 |
+
.gradio-container {
|
116 |
+
font-family: 'Arial', sans-serif;
|
117 |
+
}
|
118 |
+
"""
|
119 |
+
|
120 |
+
# Custom HTML for title and subtitle (can be displayed in Markdown)
|
121 |
+
title_markdown = """
|
122 |
+
# <div id="transart-title">TransArt</div>
|
123 |
+
### <div id="transart-subtitle">Tamil to English Translation, Creative Text & Image Generation</div>
|
124 |
+
"""
|
125 |
+
|
126 |
+
# Gradio interface with customized layout and aesthetics
|
127 |
+
with gr.Blocks(css=css) as interface:
|
128 |
+
gr.Markdown(title_markdown) # Title and subtitle in Markdown
|
129 |
+
with gr.Row():
|
130 |
+
with gr.Column():
|
131 |
+
tamil_input = gr.Textbox(label="Enter Tamil Text", placeholder="Type Tamil text here...", lines=3) # Input for Tamil text
|
132 |
+
with gr.Column():
|
133 |
+
translated_output = gr.Textbox(label="Translated Text", interactive=False) # Output for translated text
|
134 |
+
creative_text_output = gr.Textbox(label="Creative Generated Text", interactive=False) # Output for creative text
|
135 |
+
generated_image_output = gr.Image(label="Generated Image") # Output for generated image
|
136 |
+
|
137 |
+
gr.Button("Generate").click(fn=translate_generate_image_and_text, inputs=tamil_input, outputs=[translated_output, creative_text_output, generated_image_output])
|
138 |
+
|
139 |
+
# Launch the Gradio app
|
140 |
+
interface.launch(debug=True, server_name="0.0.0.0")
|