File size: 9,856 Bytes
1b92e8f
 
 
 
 
 
 
 
acfa0fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b92e8f
 
44620f0
1b92e8f
 
 
 
 
 
 
 
 
 
 
28d5bd6
1b92e8f
28d5bd6
 
 
 
 
 
 
 
 
 
 
 
 
acfa0fb
 
 
1b92e8f
28d5bd6
1b92e8f
 
28d5bd6
1b92e8f
 
28d5bd6
1b92e8f
 
28d5bd6
1b92e8f
 
 
2821e52
1b92e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d833a17
1b92e8f
 
 
 
d833a17
1b92e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
acfa0fb
44620f0
 
 
 
acfa0fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5bee3d
 
 
44620f0
 
 
 
 
 
 
 
 
 
1b92e8f
 
 
 
0211bb6
 
28d5bd6
 
acfa0fb
 
 
28d5bd6
1b92e8f
 
1baaf3c
 
1b92e8f
28d5bd6
1b92e8f
 
 
 
acfa0fb
 
1b92e8f
28d5bd6
 
1baaf3c
 
1b92e8f
 
 
acfa0fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import torch
from diffusers.loaders import AttnProcsLayers
from transformers import CLIPTextModel, CLIPTokenizer
from modules.beats.BEATs import BEATs, BEATsConfig
from modules.AudioToken.embedder import FGAEmbedder
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import LoRAAttnProcessor
from diffusers import StableDiffusionPipeline
from diffusers import (
    DDPMScheduler,
    DDIMScheduler,
    PNDMScheduler,
    LMSDiscreteScheduler,
    EulerDiscreteScheduler,
    EulerAncestralDiscreteScheduler,
    DPMSolverMultistepScheduler,
    DPMSolverSinglestepScheduler,
    DEISMultistepScheduler,
    UniPCMultistepScheduler,
    HeunDiscreteScheduler,
    KDPM2AncestralDiscreteScheduler,
    KDPM2DiscreteScheduler,
)
import numpy as np
import gradio as gr
from scipy import signal

class AudioTokenWrapper(torch.nn.Module):
    """Simple wrapper module for Stable Diffusion that holds all the models together"""

    def __init__(
        self,
        lora,
        device,
    ):

        super().__init__()
        self.repo_id = repo_id
        # Load scheduler and models
        self.ddpm = DDPMScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
        self.ddim = DDIMScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
        self.pndm = PNDMScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
        self.lms = LMSDiscreteScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
        self.euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
        self.euler = EulerDiscreteScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
        self.dpm = DPMSolverMultistepScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
        self.dpms = DPMSolverSinglestepScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
        self.deis = DEISMultistepScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
        self.unipc = UniPCMultistepScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
        self.heun = HeunDiscreteScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
        self.kdpm2_anc = KDPM2AncestralDiscreteScheduler.from_pretrained(self.repo_id, subfolder="scheduler")
        self.kdpm2 = KDPM2DiscreteScheduler.from_pretrained(self.repo_id, subfolder="scheduler")



        self.tokenizer = CLIPTokenizer.from_pretrained(
            self.repo_id, subfolder="tokenizer"
        )
        self.text_encoder = CLIPTextModel.from_pretrained(
            self.repo_id, subfolder="text_encoder", revision=None
        )
        self.unet = UNet2DConditionModel.from_pretrained(
            self.repo_id, subfolder="unet", revision=None
        )
        self.vae = AutoencoderKL.from_pretrained(
            self.repo_id, subfolder="vae", revision=None
        )

        checkpoint = torch.load(
            'models/BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt')
        cfg = BEATsConfig(checkpoint['cfg'])
        self.aud_encoder = BEATs(cfg)
        self.aud_encoder.load_state_dict(checkpoint['model'])
        self.aud_encoder.predictor = None
        input_size = 768 * 3
        self.embedder = FGAEmbedder(input_size=input_size, output_size=768)

        self.vae.eval()
        self.unet.eval()
        self.text_encoder.eval()
        self.aud_encoder.eval()

        if lora:
            # Set correct lora layers
            lora_attn_procs = {}
            for name in self.unet.attn_processors.keys():
                cross_attention_dim = None if name.endswith(
                    "attn1.processor") else self.unet.config.cross_attention_dim
                if name.startswith("mid_block"):
                    hidden_size = self.unet.config.block_out_channels[-1]
                elif name.startswith("up_blocks"):
                    block_id = int(name[len("up_blocks.")])
                    hidden_size = list(reversed(self.unet.config.block_out_channels))[block_id]
                elif name.startswith("down_blocks"):
                    block_id = int(name[len("down_blocks.")])
                    hidden_size = self.unet.config.block_out_channels[block_id]

                lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size,
                                                          cross_attention_dim=cross_attention_dim)

            self.unet.set_attn_processor(lora_attn_procs)
            self.lora_layers = AttnProcsLayers(self.unet.attn_processors)
            self.lora_layers.eval()
            lora_layers_learned_embeds = 'models/lora_layers_learned_embeds.bin'
            self.lora_layers.load_state_dict(torch.load(lora_layers_learned_embeds, map_location=device))
            self.unet.load_attn_procs(lora_layers_learned_embeds)

        self.embedder.eval()
        embedder_learned_embeds = 'models/embedder_learned_embeds.bin'
        self.embedder.load_state_dict(torch.load(embedder_learned_embeds, map_location=device))

        self.placeholder_token = '<*>'
        num_added_tokens = self.tokenizer.add_tokens(self.placeholder_token)
        if num_added_tokens == 0:
            raise ValueError(
                f"The tokenizer already contains the token {self.placeholder_token}. Please pass a different"
                " `placeholder_token` that is not already in the tokenizer."
            )
        self.placeholder_token_id = self.tokenizer.convert_tokens_to_ids(self.placeholder_token)
        # Resize the token embeddings as we are adding new special tokens to the tokenizer
        self.text_encoder.resize_token_embeddings(len(self.tokenizer))


def greet(audio, steps=25, scheduler="ddpm"):
    sample_rate, audio = audio
    audio = audio.astype(np.float32, order='C') / 32768.0
    desired_sample_rate = 16000

    match scheduler:
        case "ddpm":
            use_sched = model.ddpm
        case "ddim":
            use_sched = model.ddim
        case "pndm":
            use_sched = model.pndm
        case "lms":
            use_sched = model.lms
        case "euler_anc":
            use_sched = model.euler_anc
        case "euler":
            use_sched = model.euler
        case "dpm":
            use_sched = model.dpm
        case "dpms":
            use_sched = model.dpms
        case "deis":
            use_sched = model.deis
        case "unipc":
            use_sched = model.unipc
        case "heun":
            use_sched = model.heun
        case "kdpm2_anc":
            use_sched = model.kdpm2_anc
        case "kdpm2":
            use_sched = model.kdpm2

    if audio.ndim == 2:
        audio = audio.sum(axis=1) / 2

    if sample_rate != desired_sample_rate:
        # Calculate the resampling ratio
        resample_ratio = desired_sample_rate / sample_rate

        # Determine the new length of the audio data after downsampling
        new_length = int(len(audio) * resample_ratio)

        # Downsample the audio data using resample
        audio = signal.resample(audio, new_length)

    weight_dtype = torch.float32
    prompt = 'a photo of <*>'

    audio_values = torch.unsqueeze(torch.tensor(audio), dim=0).to(device).to(dtype=weight_dtype)
    if audio_values.ndim == 1:
        audio_values = torch.unsqueeze(audio_values, dim=0)

    # i dont know why but this seems mandatory for deterministic results
    with torch.no_grad():
        aud_features = model.aud_encoder.extract_features(audio_values)[1]
        audio_token = model.embedder(aud_features)
        token_embeds = model.text_encoder.get_input_embeddings().weight.data

    token_embeds[model.placeholder_token_id] = audio_token.clone()
    generator = torch.Generator(device=device)
    generator.manual_seed(23229249375547) # no reason this can't be input by the user!
    pipeline = StableDiffusionPipeline.from_pretrained(
        pretrained_model_name_or_path=model.repo_id,
        tokenizer=model.tokenizer,
        text_encoder=model.text_encoder,
        vae=model.vae,
        unet=model.unet,
	scheduler=use_sched,
        safety_checker=None,
    ).to(device)
    pipeline.enable_xformers_memory_efficient_attention()

    # print(f"taking {steps} steps using the {scheduler} scheduler")
    image = pipeline(prompt, num_inference_steps=steps, guidance_scale=8.5, generator=generator).images[0]
    return image


lora = False
repo_id = "philz1337/reliberate"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = AudioTokenWrapper(lora, device)
model = model.to(device)
description = """<p>
This is a demo of <a href='https://pages.cs.huji.ac.il/adiyoss-lab/AudioToken' target='_blank'>AudioToken: Adaptation of Text-Conditioned Diffusion Models for Audio-to-Image Generation</a>.<br><br>
A novel method utilizing latent diffusion models trained for text-to-image-generation to generate images conditioned on audio recordings. Using a pre-trained audio encoding model, the proposed method encodes audio into a new token, which can be considered as an adaptation layer between the audio and text representations.<br><br>
For more information, please see the original <a href='https://arxiv.org/abs/2305.13050' target='_blank'>paper</a> and <a href='https://github.com/guyyariv/AudioToken' target='_blank'>repo</a>.
</p>"""

examples = [
    # ["assets/train.wav"],
    # ["assets/dog barking.wav"],
    # ["assets/airplane taking off.wav"],
    # ["assets/electric guitar.wav"],
    # ["assets/female sings.wav"],
]

my_demo = gr.Interface(
    fn=greet,
    inputs=[
	"audio",
	gr.Slider(value=25,step=1,label="diffusion steps"),
	gr.Dropdown(choices=["ddim","ddpm","pndm","lms","euler_anc","euler","dpm","dpms","deis","unipc","heun","kdpm2_anc","kdpm2"],value="unipc"),
    ],
    outputs="image",
    title='AudioToken',
    description=description,
    examples=examples
)
my_demo.launch()