|
import numpy as np |
|
|
|
from cliport.utils import utils |
|
from cliport.agents.transporter import OriginalTransporterAgent |
|
from cliport.models.core.attention import Attention |
|
from cliport.models.core.attention_image_goal import AttentionImageGoal |
|
from cliport.models.core.transport_image_goal import TransportImageGoal |
|
|
|
|
|
class ImageGoalTransporterAgent(OriginalTransporterAgent): |
|
def __init__(self, name, cfg, train_ds, test_ds): |
|
super().__init__(name, cfg, train_ds, test_ds) |
|
|
|
def _build_model(self): |
|
stream_fcn = 'plain_resnet' |
|
self.attention = AttentionImageGoal( |
|
stream_fcn=(stream_fcn, None), |
|
in_shape=self.in_shape, |
|
n_rotations=1, |
|
preprocess=utils.preprocess, |
|
cfg=self.cfg, |
|
device=self.device_type, |
|
) |
|
self.transport = TransportImageGoal( |
|
stream_fcn=(stream_fcn, None), |
|
in_shape=self.in_shape, |
|
n_rotations=self.n_rotations, |
|
crop_size=self.crop_size, |
|
preprocess=utils.preprocess, |
|
cfg=self.cfg, |
|
device=self.device_type, |
|
) |
|
|
|
def attn_forward(self, inp, softmax=True): |
|
inp_img = inp['inp_img'] |
|
goal_img = inp['goal_img'] |
|
|
|
out = self.attention.forward(inp_img, goal_img, softmax=softmax) |
|
return out |
|
|
|
def attn_training_step(self, frame, goal, backprop=True, compute_err=False): |
|
inp_img = frame['img'] |
|
goal_img = goal['img'] |
|
p0, p0_theta = frame['p0'], frame['p0_theta'] |
|
|
|
inp = {'inp_img': inp_img, 'goal_img': goal_img} |
|
out = self.attn_forward(inp, softmax=False) |
|
return self.attn_criterion(backprop, compute_err, inp, out, p0, p0_theta) |
|
|
|
def trans_forward(self, inp, softmax=True): |
|
inp_img = inp['inp_img'] |
|
goal_img = inp['goal_img'] |
|
p0 = inp['p0'] |
|
|
|
out = self.transport.forward(inp_img, goal_img, p0, softmax=softmax) |
|
return out |
|
|
|
def transport_training_step(self, frame, goal, backprop=True, compute_err=False): |
|
inp_img = frame['img'] |
|
goal_img = goal['img'] |
|
p0 = frame['p0'] |
|
p1, p1_theta = frame['p1'], frame['p1_theta'] |
|
|
|
inp = {'inp_img': inp_img, 'goal_img': goal_img, 'p0': p0} |
|
out = self.trans_forward(inp, softmax=False) |
|
err, loss = self.transport_criterion(backprop, compute_err, inp, out, p0, p1, p1_theta) |
|
return loss, err |
|
|
|
def training_step(self, batch, batch_idx): |
|
self.attention.train() |
|
self.transport.train() |
|
frame, goal = batch |
|
|
|
|
|
step = self.total_steps + 1 |
|
loss0, err0 = self.attn_training_step(frame, goal) |
|
if isinstance(self.transport, Attention): |
|
loss1, err1 = self.attn_training_step(frame, goal) |
|
else: |
|
loss1, err1 = self.transport_training_step(frame, goal) |
|
total_loss = loss0 + loss1 |
|
self.log('tr/attn/loss', loss0) |
|
self.log('tr/trans/loss', loss1) |
|
self.log('tr/loss', total_loss) |
|
self.total_steps = step |
|
|
|
self.trainer.train_loop.running_loss.append(total_loss) |
|
|
|
self.check_save_iteration() |
|
|
|
return dict( |
|
loss=total_loss, |
|
) |
|
|
|
def validation_step(self, batch, batch_idx): |
|
self.attention.eval() |
|
self.transport.eval() |
|
|
|
loss0, loss1 = 0, 0 |
|
for i in range(self.val_repeats): |
|
frame, goal = batch |
|
l0, err0 = self.attn_training_step(frame, goal, backprop=False, compute_err=True) |
|
loss0 += l0 |
|
if isinstance(self.transport, Attention): |
|
l1, err1 = self.attn_training_step(frame, goal, backprop=False, compute_err=True) |
|
loss1 += l1 |
|
else: |
|
l1, err1 = self.transport_training_step(frame, goal, backprop=False, compute_err=True) |
|
loss1 += l1 |
|
loss0 /= self.val_repeats |
|
loss1 /= self.val_repeats |
|
val_total_loss = loss0 + loss1 |
|
|
|
self.trainer.evaluation_loop.trainer.train_loop.running_loss.append(val_total_loss) |
|
|
|
return dict( |
|
val_loss=val_total_loss, |
|
val_loss0=loss0, |
|
val_loss1=loss1, |
|
val_attn_dist_err=err0['dist'], |
|
val_attn_theta_err=err0['theta'], |
|
val_trans_dist_err=err1['dist'], |
|
val_trans_theta_err=err1['theta'], |
|
) |
|
|
|
def act(self, obs, info=None, goal=None): |
|
"""Run inference and return best action given visual observations.""" |
|
|
|
img = self.test_ds.get_image(obs) |
|
goal_img = self.test_ds.get_image(goal[0]) |
|
|
|
|
|
pick_conf = self.attention.forward(img, goal_img) |
|
pick_conf = pick_conf.detach().cpu().numpy() |
|
argmax = np.argmax(pick_conf) |
|
argmax = np.unravel_index(argmax, shape=pick_conf.shape) |
|
p0_pix = argmax[:2] |
|
p0_theta = argmax[2] * (2 * np.pi / pick_conf.shape[2]) |
|
|
|
|
|
place_conf = self.transport.forward(img, goal_img, p0_pix) |
|
place_conf = place_conf.permute(1, 2, 0) |
|
place_conf = place_conf.detach().cpu().numpy() |
|
argmax = np.argmax(place_conf) |
|
argmax = np.unravel_index(argmax, shape=place_conf.shape) |
|
p1_pix = argmax[:2] |
|
p1_theta = argmax[2] * (2 * np.pi / place_conf.shape[2]) |
|
|
|
|
|
hmap = img[:, :, 3] |
|
p0_xyz = utils.pix_to_xyz(p0_pix, hmap, self.bounds, self.pix_size) |
|
p1_xyz = utils.pix_to_xyz(p1_pix, hmap, self.bounds, self.pix_size) |
|
p0_xyzw = utils.eulerXYZ_to_quatXYZW((0, 0, -p0_theta)) |
|
p1_xyzw = utils.eulerXYZ_to_quatXYZW((0, 0, -p1_theta)) |
|
|
|
return { |
|
'pose0': (np.asarray(p0_xyz), np.asarray(p0_xyzw)), |
|
'pose1': (np.asarray(p1_xyz), np.asarray(p1_xyzw)), |
|
'pick': p0_pix, |
|
'place': p1_pix, |
|
} |
|
|