GenSim2 / cliport /tasks /palletizing_boxes.py
gensim2's picture
init
ff66cf3
raw
history blame
3.47 kB
import os
import numpy as np
from cliport.tasks.task import Task
from cliport.utils import utils
import pybullet as p
class PalletizingBoxes(Task):
"""Pick up homogeneous fixed-sized boxes and stack them in transposed layers on the pallet."""
def __init__(self):
super().__init__()
self.max_steps = 30
self.lang_template = "stack all the boxes on the pallet"
self.task_completed_desc = "done stacking boxes."
self.additional_reset()
def reset(self, env):
super().reset(env)
# Add pallet.
zone_size = (0.3, 0.25, 0.25)
zone_urdf = 'pallet/pallet.urdf'
rotation = utils.eulerXYZ_to_quatXYZW((0, 0, 0))
zone_pose = ((0.5, 0.25, 0.02), rotation)
env.add_object(zone_urdf, zone_pose, 'fixed')
# Add stack of boxes on pallet.
margin = 0.01
object_ids = []
# x, y, z dimensions for the asset size
stack_size = (0.19, 0.19, 0.19)
box_template = 'box/box-template.urdf'
stack_dim = np.int32([2, 3, 3])
box_size = (stack_size - (stack_dim - 1) * margin) / stack_dim
for z in range(stack_dim[2]):
# Transpose every layer.
stack_dim[0], stack_dim[1] = stack_dim[1], stack_dim[0]
box_size[0], box_size[1] = box_size[1], box_size[0]
# IMPORTANT: Compute object points and store as a dictionary for the `goal`
for y in range(stack_dim[1]):
for x in range(stack_dim[0]):
position = list((x + 0.5, y + 0.5, z + 0.5) * box_size)
position[0] += x * margin - stack_size[0] / 2
position[1] += y * margin - stack_size[1] / 2
position[2] += z * margin + 0.03
pose = (position, (0, 0, 0, 1))
pose = utils.multiply(zone_pose, pose)
# IMPORTANT: REPLACE THE TEMPLATE URDF
urdf = self.fill_template(box_template, {'DIM': box_size})
box_id = env.add_object(urdf, pose)
object_ids.append(box_id)
self.color_random_brown(box_id)
# Randomly select top box on pallet and save ground truth pose.
targets = []
self.steps = []
boxes = object_ids[:] # make copy
while boxes:
_, height, object_mask = self.get_true_image(env)
top = np.argwhere(height > (np.max(height) - 0.03))
rpixel = top[int(np.floor(np.random.random() * len(top)))] # y, x
box_id = int(object_mask[rpixel[0], rpixel[1]])
if box_id in boxes:
position, rotation = p.getBasePositionAndOrientation(box_id)
rposition = np.float32(position) + np.float32([0, -10, 0])
p.resetBasePositionAndOrientation(box_id, rposition, rotation)
self.steps.append(box_id)
targets.append((position, rotation))
boxes.remove(box_id)
self.steps.reverse() # Time-reversed depalletizing.
self.add_goal(objs=object_ids, matches=np.eye(len(object_ids)), targ_poses=targets, replace=False,
rotations=True, metric='zone', params=[(zone_pose, zone_size)], step_max_reward=1, language_goal=self.lang_template)
self.spawn_box()
def reward(self):
reward, info = super().reward()
self.spawn_box()
return reward, info