File size: 5,305 Bytes
1cc747d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os

import numpy as np
from cliport.tasks.task import Task
from cliport.utils import utils

import pybullet as p


class PackingSeenGoogleObjectsSeq(Task):
    """: Place the specified objects in the brown box following the order prescribed in the language
instruction at each timestep."""

    def __init__(self):
        super().__init__()
        self.max_steps = 6
        self.lang_template = "pack the {obj} in the brown box"
        self.task_completed_desc = "done packing objects."
        self.object_names = self.get_object_names()
        self.additional_reset()

    def get_object_names(self):
        return utils.google_all_shapes

    def reset(self, env):
        super().reset(env)

        # object names
        object_names = self.object_names[self.mode]

        # Add container box.
        zone_size = self.get_random_size(0.2, 0.35, 0.2, 0.35, 0.05, 0.05)
        zone_pose = self.get_random_pose(env, zone_size)
        container_template = 'container/container-template_DIM_HALF.urdf'
        replace = {'DIM': zone_size, 'HALF': (zone_size[0] / 2, zone_size[1] / 2, zone_size[2] / 2)}
        container_urdf = self.fill_template(container_template, replace)
        env.add_object(container_urdf, zone_pose, 'fixed')

        margin = 0.01
        min_object_dim = 0.08
        bboxes = []

        # Split container space with KD trees.
        stack_size = np.array(zone_size)
        stack_size[0] -= 0.01
        stack_size[1] -= 0.01
        root_size = (0.01, 0.01, 0) + tuple(stack_size)
        root = utils.TreeNode(None, [], bbox=np.array(root_size))
        utils.KDTree(root, min_object_dim, margin, bboxes)

        # Add Google Scanned Objects to scene.
        object_ids = []
        bboxes = np.array(bboxes)
        scale_factor = 5
        object_template = 'google/object-template_FNAME_COLOR_SCALE.urdf'
        chosen_objs, repeat_category = self.choose_objects(object_names, len(bboxes))
        object_descs = []
        for i, bbox in enumerate(bboxes):
            size = bbox[3:] - bbox[:3]
            max_size = size.max()
            position = size / 2. + bbox[:3]
            position[0] += -zone_size[0] / 2
            position[1] += -zone_size[1] / 2
            shape_size = max_size * scale_factor
            pose = self.get_random_pose(env, size)

            # Add object only if valid pose found.
            if pose[0] is not None:
                # Initialize with a slightly tilted pose so that the objects aren't always erect.
                slight_tilt = utils.q_mult(pose[1], (-0.1736482, 0, 0, 0.9848078))
                ps = ((pose[0][0], pose[0][1], pose[0][2]+0.05), slight_tilt)

                object_name = chosen_objs[i]
                object_name_with_underscore = object_name.replace(" ", "_")
                mesh_file = os.path.join(self.assets_root,
                                         'google',
                                         'meshes_fixed',
                                         f'{object_name_with_underscore}.obj')
                texture_file = os.path.join(self.assets_root,
                                            'google',
                                            'textures',
                                            f'{object_name_with_underscore}.png')

                try:
                    replace = {'FNAME': (mesh_file,),
                               'SCALE': [shape_size, shape_size, shape_size],
                               'COLOR': (0.2, 0.2, 0.2)}
                    urdf = self.fill_template(object_template, replace)
                    box_id = env.add_object(urdf, ps)
                    object_ids.append((box_id, (0, None)))

                    texture_id = p.loadTexture(texture_file)
                    p.changeVisualShape(box_id, -1, textureUniqueId=texture_id)
                    p.changeVisualShape(box_id, -1, rgbaColor=[1, 1, 1, 1])

                    object_descs.append(object_name)

                except Exception as e:
                    print("Failed to load Google Scanned Object in PyBullet")
                    print(object_name_with_underscore, mesh_file, texture_file)
                    print(f"Exception: {e}")

        self.set_goals(object_descs, object_ids, repeat_category, zone_pose, zone_size)

        for i in range(480):
            p.stepSimulation()

    def choose_objects(self, object_names, k):
        repeat_category = None
        return np.random.choice(object_names, k, replace=False), repeat_category

    def set_goals(self, object_descs, object_ids,  repeat_category, zone_pose, zone_size):
        # Random picking sequence.
        num_pack_objs = np.random.randint(1, len(object_ids))

        object_ids = object_ids[:num_pack_objs]
        true_poses = []
        for obj_idx, (object_id, _) in enumerate(object_ids):
            true_poses.append(zone_pose)
            language_goal = self.lang_template.format(obj=object_descs[obj_idx])
            self.add_goal(objs=[object_id], matches=np.int32([[1]]), targ_poses=[zone_pose], replace=False,
                rotations=True, metric='zone', params=[(zone_pose, zone_size)], step_max_reward=1 / len(object_ids),
                language_goal=language_goal)

        # Only mistake allowed.
        self.max_steps = len(object_ids)+1