File size: 4,906 Bytes
1cc747d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "8f4d6efb",
   "metadata": {},
   "source": [
    "# Results\n",
    "\n",
    "This notebook gathers results from evaluation JSON files and prints them as a list. \n",
    "\n",
    "### Setup\n",
    "\n",
    "- Set the root folder environment variable with `export CLIPORT_ROOT=<cliport_root>`\n",
    "- Train and evaluate agents by following the [README guide](https://github.com/cliport/cliport#single-task-training--evaluation)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "d072ae18",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "pybullet build time: Aug 16 2021 17:58:31\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import sys\n",
    "import json\n",
    "\n",
    "from cliport import agents\n",
    "from cliport import tasks"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e2ee3b65",
   "metadata": {},
   "source": [
    "### Settings"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "95c14026",
   "metadata": {},
   "outputs": [],
   "source": [
    "root_folder = os.environ['CLIPORT_ROOT']\n",
    "exp_folder = os.path.join(root_folder, 'cliport_quickstart') # replace 'cliport_quickstart' with your exps folder"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2627285a",
   "metadata": {},
   "source": [
    "### Gather JSON Results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "6f5186e1",
   "metadata": {},
   "outputs": [],
   "source": [
    "tasks_list = list(tasks.names.keys())\n",
    "agents_list = list(agents.names.keys())\n",
    "demos_list = [1, 10, 100, 1000]\n",
    "\n",
    "results = {}\n",
    "for t in tasks_list:\n",
    "    for a in agents_list:\n",
    "        for d in demos_list:\n",
    "            task_folder = f'{t}-{a}-n{d}-train'\n",
    "            task_folder_path = os.path.join(exp_folder, task_folder, 'checkpoints')\n",
    "\n",
    "            if os.path.exists(task_folder_path):\n",
    "                jsons = [f for f in os.listdir(task_folder_path) if '.json' in f]\n",
    "                for j in jsons:\n",
    "                    model_type = 'multi' if 'multi' in j else 'single'\n",
    "                    eval_type = 'val' if 'val' in j else 'test'\n",
    "                    \n",
    "                    with open(os.path.join(task_folder_path, j)) as f:\n",
    "                        res = json.load(f)\n",
    "                    \n",
    "                    results[f'{t}-{a}-n{d}-{model_type}-{eval_type}'] = res"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0b6fcfa9",
   "metadata": {},
   "source": [
    "### Print Results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "2554998c",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Experiments folder: /home/mshr/cliport/cliport_quickstart\n",
      "\n",
      "----- VAL -----\n",
      "\n",
      "stack-block-pyramid-seq-seen-colors | Train Demos: 1000\n",
      "\t97.3 : cliport | multi\n",
      "\n",
      "----- TEST -----\n",
      "\n",
      "stack-block-pyramid-seq-seen-colors | Train Demos: 1000\n",
      "\t96.5 : cliport | multi\n",
      "\n"
     ]
    }
   ],
   "source": [
    "print(f'Experiments folder: {exp_folder}\\n')\n",
    "\n",
    "for eval_type in ['val', 'test']:\n",
    "    print(f'----- {eval_type.upper()} -----\\n')\n",
    "    for t in tasks_list:\n",
    "        for a in agents_list:\n",
    "            for d in demos_list:\n",
    "                for model_type in ['single', 'multi']:\n",
    "                    eval_key = f'{t}-{a}-n{d}-{model_type}-{eval_type}'\n",
    "                    \n",
    "                    if eval_key in results:    \n",
    "                        print(f'{t} | Train Demos: {d}')\n",
    "                        \n",
    "                        res = results[eval_key]\n",
    "                        best_score, best_ckpt = max(zip([v['mean_reward'] for v in list(res.values())], \n",
    "                                                        res.keys())) # TODO: test that this works for full results folder\n",
    "                        \n",
    "                        print(f'\\t{best_score*100:1.1f} : {a} | {model_type}\\n')\n",
    "                            "
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}