GenSim3 / cliport /dataset.py
gensim2's picture
unlfs
1cc747d
"""Image dataset."""
import os
import pickle
import warnings
import numpy as np
from torch.utils.data import Dataset
from cliport import tasks
from cliport.tasks import cameras
from cliport.utils import utils
import traceback
# See transporter.py, regression.py, dummy.py, task.py, etc.
PIXEL_SIZE = 0.003125
CAMERA_CONFIG = cameras.RealSenseD415.CONFIG
BOUNDS = np.array([[0.25, 0.75], [-0.5, 0.5], [0, 0.28]])
# Names as strings, REVERSE-sorted so longer (more specific) names are first.
TASK_NAMES = (tasks.names).keys()
TASK_NAMES = sorted(TASK_NAMES)[::-1]
class RavensDataset(Dataset):
"""A simple image dataset class."""
def __init__(self, path, cfg, n_demos=0, augment=False):
"""A simple RGB-D image dataset."""
self._path = path
self.cfg = cfg
self.sample_set = []
self.max_seed = -1
self.n_episodes = 0
self.images = self.cfg['dataset']['images']
self.cache = self.cfg['dataset']['cache']
self.n_demos = n_demos
self.augment = augment
self.aug_theta_sigma = self.cfg['dataset']['augment']['theta_sigma'] if 'augment' in self.cfg['dataset'] else 60 # legacy code issue: theta_sigma was newly added
self.pix_size = 0.003125
self.in_shape = (320, 160, 6)
self.cam_config = cameras.RealSenseD415.CONFIG
self.bounds = np.array([[0.25, 0.75], [-0.5, 0.5], [0, 0.28]])
# Track existing dataset if it exists.
color_path = os.path.join(self._path, 'action')
if os.path.exists(color_path):
for fname in sorted(os.listdir(color_path)):
if '.pkl' in fname:
seed = int(fname[(fname.find('-') + 1):-4])
self.n_episodes += 1
self.max_seed = max(self.max_seed, seed)
self._cache = {}
if self.n_demos > 0:
self.images = self.cfg['dataset']['images']
self.cache = self.cfg['dataset']['cache']
# Check if there sufficient demos in the dataset
if self.n_demos > self.n_episodes:
# raise Exception(f"Requested training on {self.n_demos} demos, but only {self.n_episodes} demos exist in the dataset path: {self._path}.")
print(f"Requested training on {self.n_demos} demos, but only {self.n_episodes} demos exist in the dataset path: {self._path}.")
self.n_demos = self.n_episodes
episodes = np.random.choice(range(self.n_episodes), self.n_demos, False)
self.set(episodes)
def add(self, seed, episode):
"""Add an episode to the dataset.
Args:
seed: random seed used to initialize the episode.
episode: list of (obs, act, reward, info) tuples.
"""
color, depth, action, reward, info = [], [], [], [], []
for obs, act, r, i in episode:
color.append(obs['color'])
depth.append(obs['depth'])
action.append(act)
reward.append(r)
info.append(i)
color = np.uint8(color)
depth = np.float32(depth)
def dump(data, field):
field_path = os.path.join(self._path, field)
if not os.path.exists(field_path):
os.makedirs(field_path)
fname = f'{self.n_episodes:06d}-{seed}.pkl' # -{len(episode):06d}
with open(os.path.join(field_path, fname), 'wb') as f:
pickle.dump(data, f)
dump(color, 'color')
dump(depth, 'depth')
dump(action, 'action')
dump(reward, 'reward')
dump(info, 'info')
self.n_episodes += 1
self.max_seed = max(self.max_seed, seed)
def set(self, episodes):
"""Limit random samples to specific fixed set."""
self.sample_set = episodes
def load(self, episode_id, images=True, cache=False):
# TODO(lirui): consider loading into memory
def load_field(episode_id, field, fname):
# Check if sample is in cache.
if cache:
if episode_id in self._cache:
if field in self._cache[episode_id]:
return self._cache[episode_id][field]
else:
self._cache[episode_id] = {}
# Load sample from files.
path = os.path.join(self._path, field)
data = pickle.load(open(os.path.join(path, fname), 'rb'))
if cache:
self._cache[episode_id][field] = data
return data
# Get filename and random seed used to initialize episode.
seed = None
path = os.path.join(self._path, 'action')
for fname in sorted(os.listdir(path)):
if f'{episode_id:06d}' in fname:
seed = int(fname[(fname.find('-') + 1):-4])
# Load data.
color = load_field(episode_id, 'color', fname)
depth = load_field(episode_id, 'depth', fname)
action = load_field(episode_id, 'action', fname)
reward = load_field(episode_id, 'reward', fname)
info = load_field(episode_id, 'info', fname)
# Reconstruct episode.
episode = []
for i in range(len(action)):
obs = {'color': color[i], 'depth': depth[i]} if images else {}
episode.append((obs, action[i], reward[i], info[i]))
return episode, seed
print(f'{episode_id:06d} not in ', path)
def get_image(self, obs, cam_config=None):
"""Stack color and height images image."""
# if self.use_goal_image:
# colormap_g, heightmap_g = utils.get_fused_heightmap(goal, configs)
# goal_image = self.concatenate_c_h(colormap_g, heightmap_g)
# input_image = np.concatenate((input_image, goal_image), axis=2)
# assert input_image.shape[2] == 12, input_image.shape
if cam_config is None:
cam_config = self.cam_config
# Get color and height maps from RGB-D images.
cmap, hmap = utils.get_fused_heightmap(
obs, cam_config, self.bounds, self.pix_size)
img = np.concatenate((cmap,
hmap[Ellipsis, None],
hmap[Ellipsis, None],
hmap[Ellipsis, None]), axis=2)
assert img.shape == self.in_shape, img.shape
return img
def process_sample(self, datum, augment=True):
# Get training labels from data sample.
(obs, act, _, info) = datum
img = self.get_image(obs)
# p0, p1 = None, None
# p0_theta, p1_theta = None, None
# perturb_params = None
p0, p1 = np.zeros(1), np.zeros(1)
p0_theta, p1_theta = np.zeros(1), np.zeros(1)
perturb_params = np.zeros(5)
if act:
p0_xyz, p0_xyzw = act['pose0']
p1_xyz, p1_xyzw = act['pose1']
p0 = utils.xyz_to_pix(p0_xyz, self.bounds, self.pix_size)
p0_theta = -np.float32(utils.quatXYZW_to_eulerXYZ(p0_xyzw)[2])
p1 = utils.xyz_to_pix(p1_xyz, self.bounds, self.pix_size)
p1_theta = -np.float32(utils.quatXYZW_to_eulerXYZ(p1_xyzw)[2])
p1_theta = p1_theta - p0_theta
p0_theta = 0
# Data augmentation.
if augment:
img, _, (p0, p1), perturb_params = utils.perturb(img, [p0, p1], theta_sigma=self.aug_theta_sigma)
# print("augment:", self.cfg['train']['data_augmentation'])
if self.cfg['train']['data_augmentation']:
# visualize original color, depth and augmented color and depth
# import IPython
# IPython.embed()
color = img[...,:3]
depth = img[...,3:]
original_color = color.copy()
original_depth = depth.copy()
from cliport.utils.dataaug import chromatic_transform, add_noise, add_noise_depth
if np.random.rand(1) > 0.1:
color = chromatic_transform(color.astype(np.uint8))
if np.random.rand(1) > 0.1:
color = add_noise(color)
if np.random.rand(1) > 0.1:
depth = add_noise_depth(depth)
# visualization
# import matplotlib.pyplot as plt
# fig = plt.figure(figsize=(32, 18))
# ax = fig.add_subplot(2, 2, 1)
# plt.imshow(original_color.astype(np.uint8))
# ax = fig.add_subplot(2, 2, 2)
# plt.imshow(color.astype(np.uint8))
# ax = fig.add_subplot(2, 2, 3)
# plt.imshow(original_depth)
# ax = fig.add_subplot(2, 2, 4)
# plt.imshow(depth)
# plt.show()
color = color.astype(np.float32)
im = np.concatenate((color, depth), axis=-1)
# print("sample", p0,p1,p0_theta,p1_theta,perturb_params)
sample = {
'img': img.copy(),
'p0': np.array(p0).copy(), 'p0_theta': np.array(p0_theta).copy(),
'p1': np.array(p1).copy(), 'p1_theta': np.array(p1_theta).copy() ,
'perturb_params': np.array(perturb_params).copy()
}
# Add language goal if available.
if 'lang_goal' not in info:
warnings.warn("No language goal. Defaulting to 'task completed.'")
if info and 'lang_goal' in info:
sample['lang_goal'] = info['lang_goal']
else:
sample['lang_goal'] = "task completed."
return sample
def process_goal(self, goal, perturb_params):
# Get goal sample.
(obs, act, _, info) = goal
img = self.get_image(obs)
# p0, p1 = None, None
# p0_theta, p1_theta = None, None
p0, p1 = np.zeros(1), np.zeros(1)
p0_theta, p1_theta = np.zeros(1), np.zeros(1)
# Data augmentation with specific params.
# try:
if perturb_params is not None and len(perturb_params) > 1:
img = utils.apply_perturbation(img, perturb_params)
sample = {
'img': img.copy(),
'p0': p0 , 'p0_theta': np.array(p0_theta).copy(),
'p1': p1, 'p1_theta': np.array(p1_theta).copy(),
'perturb_params': np.array(perturb_params).copy()
}
# Add language goal if available.
if 'lang_goal' not in info:
warnings.warn("No language goal. Defaulting to 'task completed.'")
# print("goal",p0,p1,p0_theta,p1_theta,perturb_params)
if info and 'lang_goal' in info:
sample['lang_goal'] = info['lang_goal']
else:
sample['lang_goal'] = "task completed."
return sample
def __len__(self):
return len(self.sample_set)
def __getitem__(self, idx):
# Choose random episode.
# if len(self.sample_set) > 0:
# episode_id = np.random.choice(self.sample_set)
# else:
# episode_id = np.random.choice(range(self.n_episodes))
episode_id = self.sample_set[idx]
res = self.load(episode_id, self.images, self.cache)
if res is None:
print("in get item", episode_id, self._path)
print("load sample return None. Reload")
print("Exception:", str(traceback.format_exc()))
return self[0] #
episode, _ = res
# Is the task sequential like stack-block-pyramid-seq?
is_sequential_task = '-seq' in self._path.split("/")[-1]
# Return random observation action pair (and goal) from episode.
i = np.random.choice(range(len(episode)-1))
g = i+1 if is_sequential_task else -1
sample, goal = episode[i], episode[g]
# Process sample.
sample = self.process_sample(sample, augment=self.augment)
goal = self.process_goal(goal, perturb_params=sample['perturb_params'])
return sample, goal
class RavensMultiTaskDataset(RavensDataset):
def __init__(self, path, cfg, group='multi-all',
mode='train', n_demos=100, augment=False):
"""A multi-task dataset."""
self.root_path = path
self.mode = mode
if group not in self.MULTI_TASKS:
# generate the groups on the fly
self.tasks = list(set(group)) # .split(" ")
else:
self.tasks = self.MULTI_TASKS[group][mode]
print("self.tasks:", self.tasks)
self.attr_train_task = self.MULTI_TASKS[group]['attr_train_task'] if group in self.MULTI_TASKS and 'attr_train_task' in self.MULTI_TASKS[group] else None
self.cfg = cfg
self.sample_set = {}
self.max_seed = -1
self.n_episodes = 0
self.images = self.cfg['dataset']['images']
self.cache = self.cfg['dataset']['cache']
self.n_demos = n_demos
self.augment = augment
self.aug_theta_sigma = self.cfg['dataset']['augment']['theta_sigma'] if 'augment' in self.cfg['dataset'] else 60 # legacy code issue: theta_sigma was newly added
self.pix_size = 0.003125
self.in_shape = (320, 160, 6)
self.cam_config = cameras.RealSenseD415.CONFIG
self.bounds = np.array([[0.25, 0.75], [-0.5, 0.5], [0, 0.28]])
self.n_episodes = {}
episodes = {}
for task in self.tasks:
task_path = os.path.join(self.root_path, f'{task}-{mode}')
action_path = os.path.join(task_path, 'action')
n_episodes = 0
if os.path.exists(action_path):
for fname in sorted(os.listdir(action_path)):
if '.pkl' in fname:
n_episodes += 1
self.n_episodes[task] = n_episodes
if n_episodes == 0:
raise Exception(f"{task}-{mode} has 0 episodes. Remove it from the list in dataset.py")
# Select random episode depending on the size of the dataset.
episodes[task] = np.random.choice(range(self.n_demos), min(self.n_demos, n_episodes), False)
if self.n_demos > 0:
self.images = self.cfg['dataset']['images']
self.cache = False # TODO(mohit): fix caching for multi-task dataset
self.set(episodes)
self._path = None
self._task = None
def __len__(self):
# Average number of episodes across all tasks
total_episodes = 0
for _, episode_ids in self.sample_set.items():
total_episodes += len(episode_ids)
avg_episodes = total_episodes # // len(self.sample_set)
return avg_episodes
def __getitem__(self, idx):
# Choose random task.
self._task = self.tasks[idx % len(self.tasks)] # np.random.choice(self.tasks)
self._path = os.path.join(self.root_path, f'{self._task}')
# Choose random episode.
if len(self.sample_set[self._task]) > 0:
episode_id = np.random.choice(self.sample_set[self._task])
else:
episode_id = np.random.choice(range(self.n_episodes[self._task]))
res = self.load(episode_id, self.images, self.cache)
if res is None:
print("failed in get item", episode_id, self._task, self._path)
print("Exception:", str(traceback.format_exc()))
return self[np.random.randint(len(self))] #
episode, _ = res
# Is the task sequential like stack-block-pyramid-seq?
is_sequential_task = '-seq' in self._path.split("/")[-1]
# Return observation action pair (and goal) from episode.
if len(episode) > 1:
i = np.random.choice(range(len(episode)-1))
g = i+1 if is_sequential_task else -1
sample, goal = episode[i], episode[g]
else:
sample, goal = episode[0], episode[0]
# Process sample
sample = self.process_sample(sample, augment=self.augment)
goal = self.process_goal(goal, perturb_params=sample['perturb_params'])
return sample, goal
def add(self, seed, episode):
raise Exception("Adding tasks not supported with multi-task dataset")
def load(self, episode_id, images=True, cache=False):
# if self.attr_train_task is None or self.mode in ['val', 'test']:
# self._task = np.random.choice(self.tasks)
# else:
# all_other_tasks = list(self.tasks)
# all_other_tasks.remove(self.attr_train_task)
# all_tasks = [self.attr_train_task] + all_other_tasks # add seen task in the front
# # 50% chance of sampling the main seen task and 50% chance of sampling any other seen-unseen task
# mult_attr_seen_sample_prob = 0.5
# sampling_probs = [(1-mult_attr_seen_sample_prob) / (len(all_tasks)-1)] * len(all_tasks)
# sampling_probs[0] = mult_attr_seen_sample_prob
# self._task = np.random.choice(all_tasks, p=sampling_probs)
self._path = os.path.join(self.root_path, f'{self._task}-{self.mode}')
return super().load(episode_id, images, cache)
def get_curr_task(self):
return self._task
MULTI_TASKS = {
# new expeeriments
'multi-gpt-test': {
'train': ['align-box-corner', 'rainbow-stack'],
'val': ['align-box-corner', 'rainbow-stack'],
'test': ['align-box-corner', 'rainbow-stack']
},
# all tasks
'multi-all': {
'train': [
'align-box-corner',
'assembling-kits',
'block-insertion',
'manipulating-rope',
'packing-boxes',
'palletizing-boxes',
'place-red-in-green',
'stack-block-pyramid',
'sweeping-piles',
'towers-of-hanoi',
'align-rope',
'assembling-kits-seq-unseen-colors',
'packing-boxes-pairs-unseen-colors',
'packing-shapes',
'packing-unseen-google-objects-seq',
'packing-unseen-google-objects-group',
'put-block-in-bowl-unseen-colors',
'stack-block-pyramid-seq-unseen-colors',
'separating-piles-unseen-colors',
'towers-of-hanoi-seq-unseen-colors',
],
'val': [
'align-box-corner',
'assembling-kits',
'block-insertion',
'manipulating-rope',
'packing-boxes',
'palletizing-boxes',
'place-red-in-green',
'stack-block-pyramid',
'sweeping-piles',
'towers-of-hanoi',
'align-rope',
'assembling-kits-seq-seen-colors',
'assembling-kits-seq-unseen-colors',
'packing-boxes-pairs-seen-colors',
'packing-boxes-pairs-unseen-colors',
'packing-shapes',
'packing-seen-google-objects-seq',
'packing-unseen-google-objects-seq',
'packing-seen-google-objects-group',
'packing-unseen-google-objects-group',
'put-block-in-bowl-seen-colors',
'put-block-in-bowl-unseen-colors',
'stack-block-pyramid-seq-seen-colors',
'stack-block-pyramid-seq-unseen-colors',
'separating-piles-seen-colors',
'separating-piles-unseen-colors',
'towers-of-hanoi-seq-seen-colors',
'towers-of-hanoi-seq-unseen-colors',
],
'test': [
'align-box-corner',
'assembling-kits',
'block-insertion',
'manipulating-rope',
'packing-boxes',
'palletizing-boxes',
'place-red-in-green',
'stack-block-pyramid',
'sweeping-piles',
'towers-of-hanoi',
'align-rope',
'assembling-kits-seq-seen-colors',
'assembling-kits-seq-unseen-colors',
'packing-boxes-pairs-seen-colors',
'packing-boxes-pairs-unseen-colors',
'packing-shapes',
'packing-seen-google-objects-seq',
'packing-unseen-google-objects-seq',
'packing-seen-google-objects-group',
'packing-unseen-google-objects-group',
'put-block-in-bowl-seen-colors',
'put-block-in-bowl-unseen-colors',
'stack-block-pyramid-seq-seen-colors',
'stack-block-pyramid-seq-unseen-colors',
'separating-piles-seen-colors',
'separating-piles-unseen-colors',
'towers-of-hanoi-seq-seen-colors',
'towers-of-hanoi-seq-unseen-colors',
],
},
# demo-conditioned tasks
'multi-demo-conditioned': {
'train': [
'align-box-corner',
'assembling-kits',
'block-insertion',
'manipulating-rope',
'packing-boxes',
'palletizing-boxes',
'place-red-in-green',
'stack-block-pyramid',
'sweeping-piles',
'towers-of-hanoi',
],
'val': [
'align-box-corner',
'assembling-kits',
'block-insertion',
'manipulating-rope',
'packing-boxes',
'palletizing-boxes',
'place-red-in-green',
'stack-block-pyramid',
'sweeping-piles',
'towers-of-hanoi',
],
'test': [
'align-box-corner',
'assembling-kits',
'block-insertion',
'manipulating-rope',
'packing-boxes',
'palletizing-boxes',
'place-red-in-green',
'stack-block-pyramid',
'sweeping-piles',
'towers-of-hanoi',
],
},
# goal-conditioned tasks
'multi-language-conditioned': {
'train': [
'align-rope',
'assembling-kits-seq-unseen-colors', # unseen here refers to training only seen splits to be consitent with single-task setting
'packing-boxes-pairs-unseen-colors',
'packing-shapes',
'packing-unseen-google-objects-seq',
'packing-unseen-google-objects-group',
'put-block-in-bowl-unseen-colors',
'stack-block-pyramid-seq-unseen-colors',
'separating-piles-unseen-colors',
'towers-of-hanoi-seq-unseen-colors',
],
'val': [
'align-rope',
'assembling-kits-seq-seen-colors',
'assembling-kits-seq-unseen-colors',
'packing-boxes-pairs-seen-colors',
'packing-boxes-pairs-unseen-colors',
'packing-shapes',
'packing-seen-google-objects-seq',
'packing-unseen-google-objects-seq',
'packing-seen-google-objects-group',
'packing-unseen-google-objects-group',
'put-block-in-bowl-seen-colors',
'put-block-in-bowl-unseen-colors',
'stack-block-pyramid-seq-seen-colors',
'stack-block-pyramid-seq-unseen-colors',
'separating-piles-seen-colors',
'separating-piles-unseen-colors',
'towers-of-hanoi-seq-seen-colors',
'towers-of-hanoi-seq-unseen-colors',
],
'test': [
'align-rope',
'assembling-kits-seq-seen-colors',
'assembling-kits-seq-unseen-colors',
'packing-boxes-pairs-seen-colors',
'packing-boxes-pairs-unseen-colors',
'packing-shapes',
'packing-seen-google-objects-seq',
'packing-unseen-google-objects-seq',
'packing-seen-google-objects-group',
'packing-unseen-google-objects-group',
'put-block-in-bowl-seen-colors',
'put-block-in-bowl-unseen-colors',
'stack-block-pyramid-seq-seen-colors',
'stack-block-pyramid-seq-unseen-colors',
'separating-piles-seen-colors',
'separating-piles-unseen-colors',
'towers-of-hanoi-seq-seen-colors',
'towers-of-hanoi-seq-unseen-colors',
],
},
##### multi-attr tasks
'multi-attr-align-rope': {
'train': [
'assembling-kits-seq-full',
'packing-boxes-pairs-full',
'packing-shapes',
'packing-seen-google-objects-seq',
'packing-seen-google-objects-group',
'put-block-in-bowl-full',
'stack-block-pyramid-seq-full',
'separating-piles-full',
'towers-of-hanoi-seq-full',
],
'val': [
'align-rope',
],
'test': [
'align-rope',
],
'attr_train_task': None,
},
'multi-attr-packing-shapes': {
'train': [
'align-rope',
'assembling-kits-seq-full',
'packing-boxes-pairs-full',
'packing-seen-google-objects-seq',
'packing-seen-google-objects-group',
'put-block-in-bowl-full',
'stack-block-pyramid-seq-full',
'separating-piles-full',
'towers-of-hanoi-seq-full',
],
'val': [
'packing-shapes',
],
'test': [
'packing-shapes',
],
'attr_train_task': None,
},
'multi-attr-assembling-kits-seq-unseen-colors': {
'train': [
'align-rope',
'assembling-kits-seq-seen-colors', # seen only
'packing-boxes-pairs-full',
'packing-shapes',
'packing-seen-google-objects-seq',
'packing-seen-google-objects-group',
'put-block-in-bowl-full',
'stack-block-pyramid-seq-full',
'separating-piles-full',
'towers-of-hanoi-seq-full',
],
'val': [
'assembling-kits-seq-unseen-colors',
],
'test': [
'assembling-kits-seq-unseen-colors',
],
'attr_train_task': 'assembling-kits-seq-seen-colors',
},
'multi-attr-packing-boxes-pairs-unseen-colors': {
'train': [
'align-rope',
'assembling-kits-seq-full',
'packing-boxes-pairs-seen-colors', # seen only
'packing-shapes',
'packing-seen-google-objects-seq',
'packing-seen-google-objects-group',
'put-block-in-bowl-full',
'stack-block-pyramid-seq-full',
'separating-piles-full',
'towers-of-hanoi-seq-full',
],
'val': [
'packing-boxes-pairs-unseen-colors',
],
'test': [
'packing-boxes-pairs-unseen-colors',
],
'attr_train_task': 'packing-boxes-pairs-seen-colors',
},
'multi-attr-packing-unseen-google-objects-seq': {
'train': [
'align-rope',
'assembling-kits-seq-full',
'packing-boxes-pairs-full',
'packing-shapes',
'packing-seen-google-objects-group',
'put-block-in-bowl-full',
'stack-block-pyramid-seq-full',
'separating-piles-full',
'towers-of-hanoi-seq-full',
],
'val': [
'packing-unseen-google-objects-seq',
],
'test': [
'packing-unseen-google-objects-seq',
],
'attr_train_task': 'packing-seen-google-objects-group',
},
'multi-attr-packing-unseen-google-objects-group': {
'train': [
'align-rope',
'assembling-kits-seq-full',
'packing-boxes-pairs-full',
'packing-shapes',
'packing-seen-google-objects-seq',
'put-block-in-bowl-full',
'stack-block-pyramid-seq-full',
'separating-piles-full',
'towers-of-hanoi-seq-full',
],
'val': [
'packing-unseen-google-objects-group',
],
'test': [
'packing-unseen-google-objects-group',
],
'attr_train_task': 'packing-seen-google-objects-seq',
},
'multi-attr-put-block-in-bowl-unseen-colors': {
'train': [
'align-rope',
'assembling-kits-seq-full',
'packing-boxes-pairs-full',
'packing-shapes',
'packing-seen-google-objects-seq',
'packing-seen-google-objects-group',
'put-block-in-bowl-seen-colors', # seen only
'stack-block-pyramid-seq-full',
'separating-piles-full',
'towers-of-hanoi-seq-full',
],
'val': [
'put-block-in-bowl-unseen-colors',
],
'test': [
'put-block-in-bowl-unseen-colors',
],
'attr_train_task': 'put-block-in-bowl-seen-colors',
},
'multi-attr-stack-block-pyramid-seq-unseen-colors': {
'train': [
'align-rope',
'assembling-kits-seq-full',
'packing-boxes-pairs-full',
'packing-shapes',
'packing-seen-google-objects-seq',
'packing-seen-google-objects-group',
'put-block-in-bowl-full',
'stack-block-pyramid-seq-seen-colors', # seen only
'separating-piles-full',
'towers-of-hanoi-seq-full',
],
'val': [
'stack-block-pyramid-seq-unseen-colors',
],
'test': [
'stack-block-pyramid-seq-unseen-colors',
],
'attr_train_task': 'stack-block-pyramid-seq-seen-colors',
},
'multi-attr-separating-piles-unseen-colors': {
'train': [
'align-rope',
'assembling-kits-seq-full',
'packing-boxes-pairs-full',
'packing-shapes',
'packing-seen-google-objects-seq',
'packing-seen-google-objects-group',
'put-block-in-bowl-full',
'stack-block-pyramid-seq-full',
'separating-piles-seen-colors', # seen only
'towers-of-hanoi-seq-full',
],
'val': [
'separating-piles-unseen-colors',
],
'test': [
'separating-piles-unseen-colors',
],
'attr_train_task': 'separating-piles-seen-colors',
},
'multi-attr-towers-of-hanoi-seq-unseen-colors': {
'train': [
'align-rope',
'assembling-kits-seq-full',
'packing-boxes-pairs-full',
'packing-shapes',
'packing-seen-google-objects-seq',
'packing-seen-google-objects-group',
'put-block-in-bowl-full',
'stack-block-pyramid-seq-full',
'separating-piles-full',
'towers-of-hanoi-seq-seen-colors', # seen only
],
'val': [
'towers-of-hanoi-seq-unseen-colors',
],
'test': [
'towers-of-hanoi-seq-unseen-colors',
],
'attr_train_task': 'towers-of-hanoi-seq-seen-colors',
},
}
class RavenMultiTaskDatasetBalance(RavensMultiTaskDataset):
def __init__(self, path, cfg, group='multi-all',
mode='train', n_demos=100, augment=False, balance_weight=0.1):
"""A multi-task dataset for balancing data."""
self.root_path = path
self.mode = mode
if group not in self.MULTI_TASKS:
# generate the groups on the fly
self.tasks = group# .split(" ")
else:
self.tasks = self.MULTI_TASKS[group][mode]
print("self.tasks:", self.tasks)
self.attr_train_task = self.MULTI_TASKS[group]['attr_train_task'] if group in self.MULTI_TASKS and 'attr_train_task' in self.MULTI_TASKS[group] else None
self.cfg = cfg
self.sample_set = {}
self.max_seed = -1
self.n_episodes = 0
self.images = self.cfg['dataset']['images']
self.cache = self.cfg['dataset']['cache']
self.n_demos = n_demos
self.augment = augment
self.aug_theta_sigma = self.cfg['dataset']['augment']['theta_sigma'] if 'augment' in self.cfg['dataset'] else 60 # legacy code issue: theta_sigma was newly added
self.pix_size = 0.003125
self.in_shape = (320, 160, 6)
self.cam_config = cameras.RealSenseD415.CONFIG
self.bounds = np.array([[0.25, 0.75], [-0.5, 0.5], [0, 0.28]])
self.n_episodes = {}
episodes = {}
for task in self.tasks:
task_path = os.path.join(self.root_path, f'{task}-{mode}')
action_path = os.path.join(task_path, 'action')
n_episodes = 0
if os.path.exists(action_path):
for fname in sorted(os.listdir(action_path)):
if '.pkl' in fname:
n_episodes += 1
self.n_episodes[task] = n_episodes
if n_episodes == 0:
raise Exception(f"{task}-{mode} has 0 episodes. Remove it from the list in dataset.py")
# Select random episode depending on the size of the dataset.
if task in self.ORIGINAL_NAMES and self.mode == 'train':
assert self.n_demos < 200 # otherwise, we need to change the code below
episodes[task] = np.random.choice(range(n_episodes), min(int(self.n_demos*balance_weight), n_episodes), False)
else:
episodes[task] = np.random.choice(range(n_episodes), min(self.n_demos, n_episodes), False)
if self.n_demos > 0:
self.images = self.cfg['dataset']['images']
self.cache = False
self.set(episodes)
self._path = None
self._task = None
ORIGINAL_NAMES = [
# demo conditioned
'align-box-corner',
'assembling-kits',
'assembling-kits-easy',
'block-insertion',
'block-insertion-easy',
'block-insertion-nofixture',
'block-insertion-sixdof',
'block-insertion-translation',
'manipulating-rope',
'packing-boxes',
'palletizing-boxes',
'place-red-in-green',
'stack-block-pyramid',
'sweeping-piles',
'towers-of-hanoi',
'gen-task',
# goal conditioned
'align-rope',
'assembling-kits-seq',
'assembling-kits-seq-seen-colors',
'assembling-kits-seq-unseen-colors',
'assembling-kits-seq-full',
'packing-shapes',
'packing-boxes-pairs',
'packing-boxes-pairs-seen-colors',
'packing-boxes-pairs-unseen-colors',
'packing-boxes-pairs-full',
'packing-seen-google-objects-seq',
'packing-unseen-google-objects-seq',
'packing-seen-google-objects-group',
'packing-unseen-google-objects-group',
'put-block-in-bowl',
'put-block-in-bowl-seen-colors',
'put-block-in-bowl-unseen-colors',
'put-block-in-bowl-full',
'stack-block-pyramid-seq',
'stack-block-pyramid-seq-seen-colors',
'stack-block-pyramid-seq-unseen-colors',
'stack-block-pyramid-seq-full',
'separating-piles',
'separating-piles-seen-colors',
'separating-piles-unseen-colors',
'separating-piles-full',
'towers-of-hanoi-seq',
'towers-of-hanoi-seq-seen-colors',
'towers-of-hanoi-seq-unseen-colors',
'towers-of-hanoi-seq-full',
]