|
"""Attention module.""" |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
import cliport.models as models |
|
from cliport.utils import utils |
|
|
|
|
|
class Attention(nn.Module): |
|
"""Attention (a.k.a Pick) module.""" |
|
|
|
def __init__(self, stream_fcn, in_shape, n_rotations, preprocess, cfg, device): |
|
super().__init__() |
|
self.stream_fcn = stream_fcn |
|
self.n_rotations = n_rotations |
|
self.preprocess = preprocess |
|
self.cfg = cfg |
|
self.device = device |
|
self.batchnorm = self.cfg['train']['batchnorm'] |
|
|
|
self.padding = np.zeros((3, 2), dtype=int) |
|
max_dim = np.max(in_shape[:2]) |
|
pad = (max_dim - np.array(in_shape[:2])) / 2 |
|
self.padding[:2] = pad.reshape(2, 1) |
|
|
|
in_shape = np.array(in_shape) |
|
in_shape += np.sum(self.padding, axis=1) |
|
in_shape = tuple(in_shape) |
|
self.in_shape = in_shape |
|
self.rotator = utils.ImageRotator(self.n_rotations) |
|
self._build_nets() |
|
|
|
def _build_nets(self): |
|
stream_one_fcn, _ = self.stream_fcn |
|
self.attn_stream = models.names[stream_one_fcn](self.in_shape, 1, self.cfg, self.device) |
|
print(f"Attn FCN: {stream_one_fcn}") |
|
|
|
def attend(self, x): |
|
return self.attn_stream(x) |
|
|
|
def forward(self, inp_img, softmax=True): |
|
"""Forward pass.""" |
|
|
|
in_data = np.pad(inp_img, self.padding, mode='constant') |
|
in_shape = input_data.shape |
|
if len(inp_shape) == 3: |
|
inp_shape = (1,) + inp_shape |
|
in_data = in_data.reshape(in_shape) |
|
in_tens = torch.from_numpy(in_data.copy()).to(dtype=torch.float, device=self.device) |
|
|
|
|
|
pv = np.array(in_data.shape[1:3]) // 2 |
|
|
|
|
|
in_tens = in_tens.permute(0, 3, 1, 2) |
|
in_tens = in_tens.repeat(self.n_rotations, 1, 1, 1) |
|
in_tens = self.rotator(in_tens, pivot=pv) |
|
|
|
|
|
logits = self.attend(torch.cat(in_tens, dim=0), lang_goal) |
|
|
|
|
|
logits = self.rotator(logits, reverse=True, pivot=pv) |
|
logits = torch.cat(logits, dim=0) |
|
c0 = self.padding[:2, 0] |
|
c1 = c0 + inp_img.shape[:2] |
|
logits = logits[:, :, c0[0]:c1[0], c0[1]:c1[1]] |
|
|
|
logits = logits.permute(1, 2, 3, 0) |
|
output = logits.reshape(len(logits), np.prod(logits.shape)) |
|
if softmax: |
|
output = F.softmax(output, dim=-1) |
|
output = output.reshape(logits.shape[1:]) |
|
return output |