GenSim3 / notebooks /real_affordance.py
gensim2's picture
unlfs
1cc747d
import os
import sys
import json
import numpy as np
from cliport import tasks
from cliport import agents
from cliport.utils import utils
import torch
import cv2
from cliport.dataset import RavensDataset
from cliport.environments.environment import Environment
from torch.utils.data import DataLoader
import IPython
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
train_demos = 50 # number training demonstrations used to train agent
n_eval = 1 # number of evaluation instances
mode = 'test' # val or test
agent_name = 'cliport'
model_task = 'place-red-in-green' # multi-task agent conditioned with language goals
task_type = 'cliport3_task_indomain' # cliport3_task_indomain, gpt5_mixcliport2
# model_folder = f'exps/exp-{task_type}_demo{train_demos}_2023-07-27_13-30-52-small' # path to pre-trained checkpoint
# Lirui
model_folder = f'exps-singletask/debug_checkpoints' # path to pre-trained checkpoint
ckpt_name = 'last.ckpt' # name of checkpoint to load
draw_grasp_lines = True
affordance_heatmap_scale = 30
### Uncomment the task you want to evaluate on ###
# eval_task = 'align-rope'
# eval_task = 'assembling-kits-seq-seen-colors'
# eval_task = 'assembling-kits-seq-unseen-colors'
# eval_task = 'packing-shapes'
# eval_task = 'packing-boxes-pairs-seen-colors'
# eval_task = 'packing-boxes-pairs-unseen-colors'
# eval_task = 'packing-seen-google-objects-seq'
# eval_task = 'packing-unseen-google-objects-seq'
# eval_task = 'packing-seen-google-objects-group'
# eval_task = 'packing-unseen-google-objects-group'
# eval_task = 'put-block-in-bowl-seen-colors'
# eval_task = 'put-block-in-bowl-unseen-colors'
eval_task = 'place-red-in-green'
# eval_task = 'stack-block-pyramid-seq-unseen-colors'
# eval_task = 'separating-piles-seen-colors'
# eval_task = 'separating-piles-unseen-colors'
# eval_task = 'towers-of-hanoi-seq-seen-colors'
# eval_task = 'towers-of-hanoi-seq-unseen-colors'
def crop_img(img, height_range=[200, 340], width_range=[180, 460]):
img = img[height_range[0]:height_range[1], width_range[0]:width_range[1], :]
return img
def read_rgb_image(path):
img = cv2.imread(path)
img = crop_img(img)
img = cv2.resize(img, (320, 160))
img = img.transpose(1, 0, 2)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def read_depth_image(path):
# TODO: why the depth image has 4 channels ?
img = plt.imread(path, cv2.IMREAD_UNCHANGED) # TODO: need correct
img = crop_img(img)
img = cv2.resize(img, (320, 160))[:, :, 0][:, :, None]
img = img.transpose(1, 0, 2)
return img
def process_real_sample(cmap, dmap, info, aug_theta_sigma=60, augment=False):
"""Process the sample like the dataset method."""
print(cmap.shape, dmap.shape)
img = np.concatenate((cmap, dmap, dmap, dmap), axis=2)
p0, p1 = np.zeros(1), np.zeros(1)
p0_theta, p1_theta = np.zeros(1), np.zeros(1)
perturb_params = np.zeros(5)
if augment:
img, _, (p0, p1), perturb_params = utils.perturb(img, [p0, p1], theta_sigma=aug_theta_sigma)
sample = {
'img': img.copy(),
'p0': np.array(p0).copy(), 'p0_theta': np.array(p0_theta).copy(),
'p1': np.array(p1).copy(), 'p1_theta': np.array(p1_theta).copy() ,
'perturb_params': np.array(perturb_params).copy()
}
if info and 'lang_goal' in info:
sample['lang_goal'] = info['lang_goal']
return sample
def plot_affordance(batch, obs, agent, info, draw_grasp_lines=True, affordance_heatmap_scale=30):
fig, axs = plt.subplots(2, 2, figsize=(13, 7))
# Get color and depth inputs
img = batch['img'] # (320, 160, 6)
img = torch.from_numpy(img)
color = np.uint8(img.detach().cpu().numpy())[:,:,:3]
color = color.transpose(1,0,2)
depth = np.array(img.detach().cpu().numpy())[:,:,3]
depth = depth.transpose(1,0)
# Display input color
axs[0,0].imshow(color)
axs[0,0].axes.xaxis.set_visible(False)
axs[0,0].axes.yaxis.set_visible(False)
axs[0,0].set_title('Input RGB')
# Display input depth
axs[0,1].imshow(depth)
axs[0,1].axes.xaxis.set_visible(False)
axs[0,1].axes.yaxis.set_visible(False)
axs[0,1].set_title('Input Depth')
# Display predicted pick affordance
axs[1,0].imshow(color)
axs[1,0].axes.xaxis.set_visible(False)
axs[1,0].axes.yaxis.set_visible(False)
axs[1,0].set_title('Pick Affordance')
# Display predicted place affordance
axs[1,1].imshow(color)
axs[1,1].axes.xaxis.set_visible(False)
axs[1,1].axes.yaxis.set_visible(False)
axs[1,1].set_title('Place Affordance')
# Get action predictions
l = str(info['lang_goal'])
act = agent.real_act(obs, info, goal=None)
pick, place = act['pick'], act['place']
# Visualize pick affordance
pick_inp = {'inp_img': batch['img'], 'lang_goal': l}
pick_conf = agent.attn_forward(pick_inp)[0]
print("pick_conf:", pick_conf.shape, pick, place)
# IPython.embed()
logits = pick_conf.detach().cpu().numpy()
pick_conf = pick_conf.detach().cpu().numpy()
argmax = np.argmax(pick_conf)
argmax = np.unravel_index(argmax, shape=pick_conf.shape)
p0 = argmax[:2]
p0_theta = (argmax[2] * (2 * np.pi / pick_conf.shape[2])) * -1.0
line_len = 30
pick0 = (pick[0] + line_len/2.0 * np.sin(p0_theta), pick[1] + line_len/2.0 * np.cos(p0_theta))
pick1 = (pick[0] - line_len/2.0 * np.sin(p0_theta), pick[1] - line_len/2.0 * np.cos(p0_theta))
if draw_grasp_lines:
axs[1,0].plot((pick1[0], pick0[0]), (pick1[1], pick0[1]), color='r', linewidth=1)
# Visualize place affordance
place_inp = {'inp_img': batch['img'], 'p0': pick, 'lang_goal': l}
place_conf = agent.trans_forward(place_inp)[0]
place_conf = place_conf.permute(1, 2, 0)
place_conf = place_conf.detach().cpu().numpy()
argmax = np.argmax(place_conf)
argmax = np.unravel_index(argmax, shape=place_conf.shape)
p1_pix = argmax[:2]
p1_theta = (argmax[2] * (2 * np.pi / place_conf.shape[2]) + p0_theta) * -1.0
line_len = 30
place0 = (place[0] + line_len/2.0 * np.sin(p1_theta), place[1] + line_len/2.0 * np.cos(p1_theta))
place1 = (place[0] - line_len/2.0 * np.sin(p1_theta), place[1] - line_len/2.0 * np.cos(p1_theta))
if draw_grasp_lines:
axs[1,1].plot((place1[0], place0[0]), (place1[1], place0[1]), color='g', linewidth=1)
# Overlay affordances on RGB input
pick_logits_disp = np.uint8(logits * 255 * affordance_heatmap_scale).transpose(2,1,0)
place_logits_disp = np.uint8(np.sum(place_conf, axis=2)[:,:,None] * 255 * affordance_heatmap_scale).transpose(1,0,2)# .transpose(1,2,0)
pick_logits_disp_masked = np.ma.masked_where(pick_logits_disp < 0, pick_logits_disp)
place_logits_disp_masked = np.ma.masked_where(place_logits_disp < 0, place_logits_disp)
# IPython.embed()
axs[1][0].imshow(pick_logits_disp_masked, alpha=0.75)
axs[1][1].imshow(place_logits_disp_masked, cmap='viridis', alpha=0.75)
print(f"Lang Goal: {str(info['lang_goal'])}")
plt.savefig(f'{root_dir}/data/real_output/test_real_affordance2.png')
if __name__ == '__main__':
os.environ['GENSIM_ROOT'] = f'{os.path.abspath(__file__)}/../..'
root_dir = os.environ['GENSIM_ROOT']
print("root_dir:", root_dir)
assets_root = os.path.join(root_dir, 'cliport/environments/assets/')
config_file = 'eval.yaml'
vcfg = utils.load_hydra_config(os.path.join(root_dir, f'cliport/cfg/{config_file}'))
vcfg['data_dir'] = os.path.join(root_dir, 'data')
vcfg['mode'] = mode
vcfg['model_task'] = model_task
vcfg['eval_task'] = eval_task
vcfg['agent'] = agent_name
# Model and training config paths
model_path = os.path.join(root_dir, model_folder)
if model_folder[-7:] == 'smaller':
vcfg['train_config'] = f"{model_path}/{model_folder[9:-8]}-{vcfg['agent']}-n{train_demos}-train/.hydra/config.yaml"
vcfg['model_path'] = f"{model_path}/{model_folder[9:-8]}-{vcfg['agent']}-n{train_demos}-train/checkpoints/"
else:
vcfg['train_config'] = f"{model_path}/{model_folder[9:-6]}-{vcfg['agent']}-n{train_demos}-train/.hydra/config.yaml"
vcfg['model_path'] = f"{model_path}/{model_folder[9:-6]}-{vcfg['agent']}-n{train_demos}-train/checkpoints/"
tcfg = utils.load_hydra_config(vcfg['train_config'])
# Load dataset
ds = RavensDataset(os.path.join(vcfg['data_dir'], f'{vcfg["eval_task"]}-{vcfg["mode"]}'),
tcfg,
n_demos=n_eval,
augment=False)
eval_run = 0
name = '{}-{}-{}-{}'.format(vcfg['eval_task'], vcfg['agent'], n_eval, eval_run)
print(f'\nEval ID: {name}\n')
# Initialize agent
utils.set_seed(eval_run, torch=True)
agent = agents.names[vcfg['agent']](name, tcfg, DataLoader(ds), DataLoader(ds))
# Load checkpoint
ckpt_path = os.path.join(vcfg['model_path'], ckpt_name)
print(f'\nLoading checkpoint: {ckpt_path}')
agent.load(ckpt_path)
os.makedirs(f'{root_dir}/data/real_output', exist_ok=True)
real_rgb_img = read_rgb_image(f'{root_dir}/data/real_imgs/rgb0.png')
plt.imshow(real_rgb_img[:, :, :3])
plt.axis('off')
plt.savefig(f'{root_dir}/data/real_output/real_show.png')
real_depth_img = read_depth_image(f'{root_dir}/data/real_imgs/depth0.png')
print(real_depth_img.shape, real_rgb_img.shape)
plt.imshow(real_depth_img, cmap='gray')
plt.savefig(f'{root_dir}/data/real_output/real_depth.png')
info = {}
info['lang_goal'] = 'place red block in green bowl'
batch = process_real_sample(real_rgb_img, real_depth_img, info, augment=False)
obs = batch['img']
plot_affordance(batch, obs, agent, info, draw_grasp_lines=draw_grasp_lines, affordance_heatmap_scale=affordance_heatmap_scale)