GenSim3 / scripts /traintest_scripts /train_test_multi_task_indistribution_bn.sh
gensim2's picture
unlfs
1cc747d
#!/bin/bash
DATA_DIR=$1
TRAINTASK=${2-'[rainbow-stack,bowl-ball-placement]'}
TASKNAME=${3-'mix-two'}
STEPS=${4-'20000'}
DISP=False
echo "Training multi-task dataset... Folder: $DATA_DIR Task $TASK"
trap "kill 0" SIGINT
# You can parallelize these depending on how much resources you have
#############################
## Language-Conditioned Tasks
# [align-rope,assembling-kits-seq-seen-colors,assembling-kits-seq-unseen-colors,packing-shapes]
# TRAIN
python cliport/train.py train.task=$TRAINTASK \
train.agent=cliport \
train.model_task=$TASKNAME \
train.attn_stream_fusion_type=add \
train.trans_stream_fusion_type=conv \
train.lang_fusion_type=mult \
train.n_demos=200 \
train.n_steps=${STEPS} \
dataset.cache=True \
train.exp_folder=exps/exp-$TASKNAME \
dataset.type=multi \
train.load_from_last_ckpt=False \
train.batchnorm=True
# Convert Python list to Bash array
bash_array=$(python3 -c "import sys; print(' '.join((sys.argv[1])[1:-1].split(',')))" "$TRAINTASK")
# Convert the space-separated string to a bash array
echo "Testing multi-task dataset... Folder: $DATA_DIR Task $TASK"
for task in $bash_array
do
echo "Testing $task"
# TEST
bash scripts/generate_gpt_datasets.sh data $task
python cliport/eval.py model_task=$TASKNAME \
eval_task=$task \
agent=cliport \
mode=test \
n_demos=100 \
train_demos=200 \
checkpoint_type=test_best \
type=single \
exp_folder=exps/exp-$TASKNAME \
update_results=True \
train.batchnorm=True &
done
wait
python notebooks/print_results.py -r=exps/exp-$TASKNAME
echo "Finished Training."