HaMeR / mmpose /models /detectors /associative_embedding.py
geopavlakos's picture
Initial commit
d7a991a
raw
history blame
15.5 kB
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
import mmcv
import torch
from mmcv.image import imwrite
from mmcv.utils.misc import deprecated_api_warning
from mmcv.visualization.image import imshow
from mmpose.core.evaluation import (aggregate_scale, aggregate_stage_flip,
flip_feature_maps, get_group_preds,
split_ae_outputs)
from mmpose.core.post_processing.group import HeatmapParser
from mmpose.core.visualization import imshow_keypoints
from .. import builder
from ..builder import POSENETS
from .base import BasePose
try:
from mmcv.runner import auto_fp16
except ImportError:
warnings.warn('auto_fp16 from mmpose will be deprecated from v0.15.0'
'Please install mmcv>=1.1.4')
from mmpose.core import auto_fp16
@POSENETS.register_module()
class AssociativeEmbedding(BasePose):
"""Associative embedding pose detectors.
Args:
backbone (dict): Backbone modules to extract feature.
keypoint_head (dict): Keypoint head to process feature.
train_cfg (dict): Config for training. Default: None.
test_cfg (dict): Config for testing. Default: None.
pretrained (str): Path to the pretrained models.
loss_pose (None): Deprecated arguments. Please use
``loss_keypoint`` for heads instead.
"""
def __init__(self,
backbone,
keypoint_head=None,
train_cfg=None,
test_cfg=None,
pretrained=None,
loss_pose=None):
super().__init__()
self.fp16_enabled = False
self.backbone = builder.build_backbone(backbone)
if keypoint_head is not None:
if 'loss_keypoint' not in keypoint_head and loss_pose is not None:
warnings.warn(
'`loss_pose` for BottomUp is deprecated, '
'use `loss_keypoint` for heads instead. See '
'https://github.com/open-mmlab/mmpose/pull/382'
' for more information.', DeprecationWarning)
keypoint_head['loss_keypoint'] = loss_pose
self.keypoint_head = builder.build_head(keypoint_head)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
self.use_udp = test_cfg.get('use_udp', False)
self.parser = HeatmapParser(self.test_cfg)
self.init_weights(pretrained=pretrained)
@property
def with_keypoint(self):
"""Check if has keypoint_head."""
return hasattr(self, 'keypoint_head')
def init_weights(self, pretrained=None):
"""Weight initialization for model."""
self.backbone.init_weights(pretrained)
if self.with_keypoint:
self.keypoint_head.init_weights()
@auto_fp16(apply_to=('img', ))
def forward(self,
img=None,
targets=None,
masks=None,
joints=None,
img_metas=None,
return_loss=True,
return_heatmap=False,
**kwargs):
"""Calls either forward_train or forward_test depending on whether
return_loss is True.
Note:
- batch_size: N
- num_keypoints: K
- num_img_channel: C
- img_width: imgW
- img_height: imgH
- heatmaps weight: W
- heatmaps height: H
- max_num_people: M
Args:
img (torch.Tensor[N,C,imgH,imgW]): Input image.
targets (list(torch.Tensor[N,K,H,W])): Multi-scale target heatmaps.
masks (list(torch.Tensor[N,H,W])): Masks of multi-scale target
heatmaps
joints (list(torch.Tensor[N,M,K,2])): Joints of multi-scale target
heatmaps for ae loss
img_metas (dict): Information about val & test.
By default it includes:
- "image_file": image path
- "aug_data": input
- "test_scale_factor": test scale factor
- "base_size": base size of input
- "center": center of image
- "scale": scale of image
- "flip_index": flip index of keypoints
return loss (bool): ``return_loss=True`` for training,
``return_loss=False`` for validation & test.
return_heatmap (bool) : Option to return heatmap.
Returns:
dict|tuple: if 'return_loss' is true, then return losses. \
Otherwise, return predicted poses, scores, image \
paths and heatmaps.
"""
if return_loss:
return self.forward_train(img, targets, masks, joints, img_metas,
**kwargs)
return self.forward_test(
img, img_metas, return_heatmap=return_heatmap, **kwargs)
def forward_train(self, img, targets, masks, joints, img_metas, **kwargs):
"""Forward the bottom-up model and calculate the loss.
Note:
batch_size: N
num_keypoints: K
num_img_channel: C
img_width: imgW
img_height: imgH
heatmaps weight: W
heatmaps height: H
max_num_people: M
Args:
img (torch.Tensor[N,C,imgH,imgW]): Input image.
targets (List(torch.Tensor[N,K,H,W])): Multi-scale target heatmaps.
masks (List(torch.Tensor[N,H,W])): Masks of multi-scale target
heatmaps
joints (List(torch.Tensor[N,M,K,2])): Joints of multi-scale target
heatmaps for ae loss
img_metas (dict):Information about val&test
By default this includes:
- "image_file": image path
- "aug_data": input
- "test_scale_factor": test scale factor
- "base_size": base size of input
- "center": center of image
- "scale": scale of image
- "flip_index": flip index of keypoints
Returns:
dict: The total loss for bottom-up
"""
output = self.backbone(img)
if self.with_keypoint:
output = self.keypoint_head(output)
# if return loss
losses = dict()
if self.with_keypoint:
keypoint_losses = self.keypoint_head.get_loss(
output, targets, masks, joints)
losses.update(keypoint_losses)
return losses
def forward_dummy(self, img):
"""Used for computing network FLOPs.
See ``tools/get_flops.py``.
Args:
img (torch.Tensor): Input image.
Returns:
Tensor: Outputs.
"""
output = self.backbone(img)
if self.with_keypoint:
output = self.keypoint_head(output)
return output
def forward_test(self, img, img_metas, return_heatmap=False, **kwargs):
"""Inference the bottom-up model.
Note:
- Batchsize: N (currently support batchsize = 1)
- num_img_channel: C
- img_width: imgW
- img_height: imgH
Args:
flip_index (List(int)):
aug_data (List(Tensor[NxCximgHximgW])): Multi-scale image
test_scale_factor (List(float)): Multi-scale factor
base_size (Tuple(int)): Base size of image when scale is 1
center (np.ndarray): center of image
scale (np.ndarray): the scale of image
"""
assert img.size(0) == 1
assert len(img_metas) == 1
img_metas = img_metas[0]
aug_data = img_metas['aug_data']
test_scale_factor = img_metas['test_scale_factor']
base_size = img_metas['base_size']
center = img_metas['center']
scale = img_metas['scale']
result = {}
scale_heatmaps_list = []
scale_tags_list = []
for idx, s in enumerate(sorted(test_scale_factor, reverse=True)):
image_resized = aug_data[idx].to(img.device)
features = self.backbone(image_resized)
if self.with_keypoint:
outputs = self.keypoint_head(features)
heatmaps, tags = split_ae_outputs(
outputs, self.test_cfg['num_joints'],
self.test_cfg['with_heatmaps'], self.test_cfg['with_ae'],
self.test_cfg.get('select_output_index', range(len(outputs))))
if self.test_cfg.get('flip_test', True):
# use flip test
features_flipped = self.backbone(
torch.flip(image_resized, [3]))
if self.with_keypoint:
outputs_flipped = self.keypoint_head(features_flipped)
heatmaps_flipped, tags_flipped = split_ae_outputs(
outputs_flipped, self.test_cfg['num_joints'],
self.test_cfg['with_heatmaps'], self.test_cfg['with_ae'],
self.test_cfg.get('select_output_index',
range(len(outputs))))
heatmaps_flipped = flip_feature_maps(
heatmaps_flipped, flip_index=img_metas['flip_index'])
if self.test_cfg['tag_per_joint']:
tags_flipped = flip_feature_maps(
tags_flipped, flip_index=img_metas['flip_index'])
else:
tags_flipped = flip_feature_maps(
tags_flipped, flip_index=None, flip_output=True)
else:
heatmaps_flipped = None
tags_flipped = None
aggregated_heatmaps = aggregate_stage_flip(
heatmaps,
heatmaps_flipped,
index=-1,
project2image=self.test_cfg['project2image'],
size_projected=base_size,
align_corners=self.test_cfg.get('align_corners', True),
aggregate_stage='average',
aggregate_flip='average')
aggregated_tags = aggregate_stage_flip(
tags,
tags_flipped,
index=-1,
project2image=self.test_cfg['project2image'],
size_projected=base_size,
align_corners=self.test_cfg.get('align_corners', True),
aggregate_stage='concat',
aggregate_flip='concat')
if s == 1 or len(test_scale_factor) == 1:
if isinstance(aggregated_tags, list):
scale_tags_list.extend(aggregated_tags)
else:
scale_tags_list.append(aggregated_tags)
if isinstance(aggregated_heatmaps, list):
scale_heatmaps_list.extend(aggregated_heatmaps)
else:
scale_heatmaps_list.append(aggregated_heatmaps)
aggregated_heatmaps = aggregate_scale(
scale_heatmaps_list,
align_corners=self.test_cfg.get('align_corners', True),
aggregate_scale='average')
aggregated_tags = aggregate_scale(
scale_tags_list,
align_corners=self.test_cfg.get('align_corners', True),
aggregate_scale='unsqueeze_concat')
heatmap_size = aggregated_heatmaps.shape[2:4]
tag_size = aggregated_tags.shape[2:4]
if heatmap_size != tag_size:
tmp = []
for idx in range(aggregated_tags.shape[-1]):
tmp.append(
torch.nn.functional.interpolate(
aggregated_tags[..., idx],
size=heatmap_size,
mode='bilinear',
align_corners=self.test_cfg.get('align_corners',
True)).unsqueeze(-1))
aggregated_tags = torch.cat(tmp, dim=-1)
# perform grouping
grouped, scores = self.parser.parse(aggregated_heatmaps,
aggregated_tags,
self.test_cfg['adjust'],
self.test_cfg['refine'])
preds = get_group_preds(
grouped,
center,
scale, [aggregated_heatmaps.size(3),
aggregated_heatmaps.size(2)],
use_udp=self.use_udp)
image_paths = []
image_paths.append(img_metas['image_file'])
if return_heatmap:
output_heatmap = aggregated_heatmaps.detach().cpu().numpy()
else:
output_heatmap = None
result['preds'] = preds
result['scores'] = scores
result['image_paths'] = image_paths
result['output_heatmap'] = output_heatmap
return result
@deprecated_api_warning({'pose_limb_color': 'pose_link_color'},
cls_name='AssociativeEmbedding')
def show_result(self,
img,
result,
skeleton=None,
kpt_score_thr=0.3,
bbox_color=None,
pose_kpt_color=None,
pose_link_color=None,
radius=4,
thickness=1,
font_scale=0.5,
win_name='',
show=False,
show_keypoint_weight=False,
wait_time=0,
out_file=None):
"""Draw `result` over `img`.
Args:
img (str or Tensor): The image to be displayed.
result (list[dict]): The results to draw over `img`
(bbox_result, pose_result).
skeleton (list[list]): The connection of keypoints.
skeleton is 0-based indexing.
kpt_score_thr (float, optional): Minimum score of keypoints
to be shown. Default: 0.3.
pose_kpt_color (np.array[Nx3]`): Color of N keypoints.
If None, do not draw keypoints.
pose_link_color (np.array[Mx3]): Color of M links.
If None, do not draw links.
radius (int): Radius of circles.
thickness (int): Thickness of lines.
font_scale (float): Font scales of texts.
win_name (str): The window name.
show (bool): Whether to show the image. Default: False.
show_keypoint_weight (bool): Whether to change the transparency
using the predicted confidence scores of keypoints.
wait_time (int): Value of waitKey param.
Default: 0.
out_file (str or None): The filename to write the image.
Default: None.
Returns:
Tensor: Visualized image only if not `show` or `out_file`
"""
img = mmcv.imread(img)
img = img.copy()
img_h, img_w, _ = img.shape
pose_result = []
for res in result:
pose_result.append(res['keypoints'])
imshow_keypoints(img, pose_result, skeleton, kpt_score_thr,
pose_kpt_color, pose_link_color, radius, thickness)
if show:
imshow(img, win_name, wait_time)
if out_file is not None:
imwrite(img, out_file)
return img