Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import os | |
import os.path as osp | |
from argparse import ArgumentParser | |
import mmcv | |
import numpy as np | |
from xtcocotools.coco import COCO | |
from mmpose.apis import inference_interhand_3d_model, vis_3d_pose_result | |
from mmpose.apis.inference import init_pose_model | |
from mmpose.core import SimpleCamera | |
def _transform_interhand_camera_param(interhand_camera_param): | |
"""Transform the camera parameters in interhand2.6m dataset to the format | |
of SimpleCamera. | |
Args: | |
interhand_camera_param (dict): camera parameters including: | |
- camrot: 3x3, camera rotation matrix (world-to-camera) | |
- campos: 3x1, camera location in world space | |
- focal: 2x1, camera focal length | |
- princpt: 2x1, camera center | |
Returns: | |
param (dict): camera parameters including: | |
- R: 3x3, camera rotation matrix (camera-to-world) | |
- T: 3x1, camera translation (camera-to-world) | |
- f: 2x1, camera focal length | |
- c: 2x1, camera center | |
""" | |
camera_param = {} | |
camera_param['R'] = np.array(interhand_camera_param['camrot']).T | |
camera_param['T'] = np.array(interhand_camera_param['campos'])[:, None] | |
camera_param['f'] = np.array(interhand_camera_param['focal'])[:, None] | |
camera_param['c'] = np.array(interhand_camera_param['princpt'])[:, None] | |
return camera_param | |
def main(): | |
parser = ArgumentParser() | |
parser.add_argument('pose_config', help='Config file for pose network') | |
parser.add_argument('pose_checkpoint', help='Checkpoint file') | |
parser.add_argument('--img-root', type=str, default='', help='Image root') | |
parser.add_argument( | |
'--json-file', | |
type=str, | |
default='', | |
help='Json file containing image info.') | |
parser.add_argument( | |
'--camera-param-file', | |
type=str, | |
default=None, | |
help='Camera parameter file for converting 3D pose predictions from ' | |
' the pixel space to camera space. If None, keypoints in pixel space' | |
'will be visualized') | |
parser.add_argument( | |
'--gt-joints-file', | |
type=str, | |
default=None, | |
help='Optional argument. Ground truth 3D keypoint parameter file. ' | |
'If None, gt keypoints will not be shown and keypoints in pixel ' | |
'space will be visualized.') | |
parser.add_argument( | |
'--rebase-keypoint-height', | |
action='store_true', | |
help='Rebase the predicted 3D pose so its lowest keypoint has a ' | |
'height of 0 (landing on the ground). This is useful for ' | |
'visualization when the model do not predict the global position ' | |
'of the 3D pose.') | |
parser.add_argument( | |
'--show-ground-truth', | |
action='store_true', | |
help='If True, show ground truth keypoint if it is available.') | |
parser.add_argument( | |
'--show', | |
action='store_true', | |
default=False, | |
help='whether to show img') | |
parser.add_argument( | |
'--out-img-root', | |
type=str, | |
default=None, | |
help='Root of the output visualization images. ' | |
'Default not saving the visualization images.') | |
parser.add_argument( | |
'--device', default='cuda:0', help='Device for inference') | |
parser.add_argument( | |
'--kpt-thr', type=float, default=0.3, help='Keypoint score threshold') | |
parser.add_argument( | |
'--radius', | |
type=int, | |
default=4, | |
help='Keypoint radius for visualization') | |
parser.add_argument( | |
'--thickness', | |
type=int, | |
default=1, | |
help='Link thickness for visualization') | |
args = parser.parse_args() | |
assert args.show or (args.out_img_root != '') | |
coco = COCO(args.json_file) | |
# build the pose model from a config file and a checkpoint file | |
pose_model = init_pose_model( | |
args.pose_config, args.pose_checkpoint, device=args.device.lower()) | |
dataset = pose_model.cfg.data['test']['type'] | |
# load camera parameters | |
camera_params = None | |
if args.camera_param_file is not None: | |
camera_params = mmcv.load(args.camera_param_file) | |
# load ground truth joints parameters | |
gt_joint_params = None | |
if args.gt_joints_file is not None: | |
gt_joint_params = mmcv.load(args.gt_joints_file) | |
# load hand bounding boxes | |
det_results_list = [] | |
for image_id, image in coco.imgs.items(): | |
image_name = osp.join(args.img_root, image['file_name']) | |
ann_ids = coco.getAnnIds(image_id) | |
det_results = [] | |
capture_key = str(image['capture']) | |
camera_key = image['camera'] | |
frame_idx = image['frame_idx'] | |
for ann_id in ann_ids: | |
ann = coco.anns[ann_id] | |
if camera_params is not None: | |
camera_param = { | |
key: camera_params[capture_key][key][camera_key] | |
for key in camera_params[capture_key].keys() | |
} | |
camera_param = _transform_interhand_camera_param(camera_param) | |
else: | |
camera_param = None | |
if gt_joint_params is not None: | |
joint_param = gt_joint_params[capture_key][str(frame_idx)] | |
gt_joint = np.concatenate([ | |
np.array(joint_param['world_coord']), | |
np.array(joint_param['joint_valid']) | |
], | |
axis=-1) | |
else: | |
gt_joint = None | |
det_result = { | |
'image_name': image_name, | |
'bbox': ann['bbox'], # bbox format is 'xywh' | |
'camera_param': camera_param, | |
'keypoints_3d_gt': gt_joint | |
} | |
det_results.append(det_result) | |
det_results_list.append(det_results) | |
for i, det_results in enumerate( | |
mmcv.track_iter_progress(det_results_list)): | |
image_name = det_results[0]['image_name'] | |
pose_results = inference_interhand_3d_model( | |
pose_model, image_name, det_results, dataset=dataset) | |
# Post processing | |
pose_results_vis = [] | |
for idx, res in enumerate(pose_results): | |
keypoints_3d = res['keypoints_3d'] | |
# normalize kpt score | |
if keypoints_3d[:, 3].max() > 1: | |
keypoints_3d[:, 3] /= 255 | |
# get 2D keypoints in pixel space | |
res['keypoints'] = keypoints_3d[:, [0, 1, 3]] | |
# For model-predicted keypoints, channel 0 and 1 are coordinates | |
# in pixel space, and channel 2 is the depth (in mm) relative | |
# to root joints. | |
# If both camera parameter and absolute depth of root joints are | |
# provided, we can transform keypoint to camera space for better | |
# visualization. | |
camera_param = res['camera_param'] | |
keypoints_3d_gt = res['keypoints_3d_gt'] | |
if camera_param is not None and keypoints_3d_gt is not None: | |
# build camera model | |
camera = SimpleCamera(camera_param) | |
# transform gt joints from world space to camera space | |
keypoints_3d_gt[:, :3] = camera.world_to_camera( | |
keypoints_3d_gt[:, :3]) | |
# transform relative depth to absolute depth | |
keypoints_3d[:21, 2] += keypoints_3d_gt[20, 2] | |
keypoints_3d[21:, 2] += keypoints_3d_gt[41, 2] | |
# transform keypoints from pixel space to camera space | |
keypoints_3d[:, :3] = camera.pixel_to_camera( | |
keypoints_3d[:, :3]) | |
# rotate the keypoint to make z-axis correspondent to height | |
# for better visualization | |
vis_R = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]]) | |
keypoints_3d[:, :3] = keypoints_3d[:, :3] @ vis_R | |
if keypoints_3d_gt is not None: | |
keypoints_3d_gt[:, :3] = keypoints_3d_gt[:, :3] @ vis_R | |
# rebase height (z-axis) | |
if args.rebase_keypoint_height: | |
valid = keypoints_3d[..., 3] > 0 | |
keypoints_3d[..., 2] -= np.min( | |
keypoints_3d[valid, 2], axis=-1, keepdims=True) | |
res['keypoints_3d'] = keypoints_3d | |
res['keypoints_3d_gt'] = keypoints_3d_gt | |
# Add title | |
instance_id = res.get('track_id', idx) | |
res['title'] = f'Prediction ({instance_id})' | |
pose_results_vis.append(res) | |
# Add ground truth | |
if args.show_ground_truth: | |
if keypoints_3d_gt is None: | |
print('Fail to show ground truth. Please make sure that' | |
' gt-joints-file is provided.') | |
else: | |
gt = res.copy() | |
if args.rebase_keypoint_height: | |
valid = keypoints_3d_gt[..., 3] > 0 | |
keypoints_3d_gt[..., 2] -= np.min( | |
keypoints_3d_gt[valid, 2], axis=-1, keepdims=True) | |
gt['keypoints_3d'] = keypoints_3d_gt | |
gt['title'] = f'Ground truth ({instance_id})' | |
pose_results_vis.append(gt) | |
# Visualization | |
if args.out_img_root is None: | |
out_file = None | |
else: | |
os.makedirs(args.out_img_root, exist_ok=True) | |
out_file = osp.join(args.out_img_root, f'vis_{i}.jpg') | |
vis_3d_pose_result( | |
pose_model, | |
result=pose_results_vis, | |
img=det_results[0]['image_name'], | |
out_file=out_file, | |
dataset=dataset, | |
show=args.show, | |
kpt_score_thr=args.kpt_thr, | |
radius=args.radius, | |
thickness=args.thickness, | |
) | |
if __name__ == '__main__': | |
main() | |