Spaces:
Build error
A newer version of the Gradio SDK is available:
5.26.0
2D Hand Keypoint Datasets
It is recommended to symlink the dataset root to $MMPOSE/data
.
If your folder structure is different, you may need to change the corresponding paths in config files.
MMPose supported datasets:
- OneHand10K [ Homepage ]
- FreiHand [ Homepage ]
- CMU Panoptic HandDB [ Homepage ]
- InterHand2.6M [ Homepage ]
- RHD [ Homepage ]
- COCO-WholeBody-Hand [ Homepage ]
OneHand10K
OneHand10K (TCSVT'2019)
@article{wang2018mask,
title={Mask-pose cascaded cnn for 2d hand pose estimation from single color image},
author={Wang, Yangang and Peng, Cong and Liu, Yebin},
journal={IEEE Transactions on Circuits and Systems for Video Technology},
volume={29},
number={11},
pages={3258--3268},
year={2018},
publisher={IEEE}
}
For OneHand10K data, please download from OneHand10K Dataset. Please download the annotation files from onehand10k_annotations. Extract them under {MMPose}/data, and make them look like this:
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ onehand10k
|ββ annotations
| |ββ onehand10k_train.json
| |ββ onehand10k_test.json
`ββ Train
| |ββ source
| |ββ 0.jpg
| |ββ 1.jpg
| ...
`ββ Test
|ββ source
|ββ 0.jpg
|ββ 1.jpg
FreiHAND Dataset
FreiHand (ICCV'2019)
@inproceedings{zimmermann2019freihand,
title={Freihand: A dataset for markerless capture of hand pose and shape from single rgb images},
author={Zimmermann, Christian and Ceylan, Duygu and Yang, Jimei and Russell, Bryan and Argus, Max and Brox, Thomas},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={813--822},
year={2019}
}
For FreiHAND data, please download from FreiHand Dataset. Since the official dataset does not provide validation set, we randomly split the training data into 8:1:1 for train/val/test. Please download the annotation files from freihand_annotations. Extract them under {MMPose}/data, and make them look like this:
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ freihand
|ββ annotations
| |ββ freihand_train.json
| |ββ freihand_val.json
| |ββ freihand_test.json
`ββ training
|ββ rgb
| |ββ 00000000.jpg
| |ββ 00000001.jpg
| ...
|ββ mask
|ββ 00000000.jpg
|ββ 00000001.jpg
...
CMU Panoptic HandDB
CMU Panoptic HandDB (CVPR'2017)
@inproceedings{simon2017hand,
title={Hand keypoint detection in single images using multiview bootstrapping},
author={Simon, Tomas and Joo, Hanbyul and Matthews, Iain and Sheikh, Yaser},
booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
pages={1145--1153},
year={2017}
}
For CMU Panoptic HandDB, please download from CMU Panoptic HandDB. Following Simon et al, panoptic images (hand143_panopticdb) and MPII & NZSL training sets (manual_train) are used for training, while MPII & NZSL test set (manual_test) for testing. Please download the annotation files from panoptic_annotations. Extract them under {MMPose}/data, and make them look like this:
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ panoptic
|ββ annotations
| |ββ panoptic_train.json
| |ββ panoptic_test.json
|
`ββ hand143_panopticdb
| |ββ imgs
| | |ββ 00000000.jpg
| | |ββ 00000001.jpg
| | ...
|
`ββ hand_labels
|ββ manual_train
| |ββ 000015774_01_l.jpg
| |ββ 000015774_01_r.jpg
| ...
|
`ββ manual_test
|ββ 000648952_02_l.jpg
|ββ 000835470_01_l.jpg
...
InterHand2.6M
InterHand2.6M (ECCV'2020)
@InProceedings{Moon_2020_ECCV_InterHand2.6M,
author = {Moon, Gyeongsik and Yu, Shoou-I and Wen, He and Shiratori, Takaaki and Lee, Kyoung Mu},
title = {InterHand2.6M: A Dataset and Baseline for 3D Interacting Hand Pose Estimation from a Single RGB Image},
booktitle = {European Conference on Computer Vision (ECCV)},
year = {2020}
}
For InterHand2.6M, please download from InterHand2.6M. Please download the annotation files from annotations. Extract them under {MMPose}/data, and make them look like this:
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ interhand2.6m
|ββ annotations
| |ββ all
| |ββ human_annot
| |ββ machine_annot
| |ββ skeleton.txt
| |ββ subject.txt
|
`ββ images
| |ββ train
| | |-- Capture0 ~ Capture26
| |ββ val
| | |-- Capture0
| |ββ test
| | |-- Capture0 ~ Capture7
RHD Dataset
RHD (ICCV'2017)
@TechReport{zb2017hand,
author={Christian Zimmermann and Thomas Brox},
title={Learning to Estimate 3D Hand Pose from Single RGB Images},
institution={arXiv:1705.01389},
year={2017},
note="https://arxiv.org/abs/1705.01389",
url="https://lmb.informatik.uni-freiburg.de/projects/hand3d/"
}
For RHD Dataset, please download from RHD Dataset. Please download the annotation files from rhd_annotations. Extract them under {MMPose}/data, and make them look like this:
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ rhd
|ββ annotations
| |ββ rhd_train.json
| |ββ rhd_test.json
`ββ training
| |ββ color
| | |ββ 00000.jpg
| | |ββ 00001.jpg
| |ββ depth
| | |ββ 00000.jpg
| | |ββ 00001.jpg
| |ββ mask
| | |ββ 00000.jpg
| | |ββ 00001.jpg
`ββ evaluation
| |ββ color
| | |ββ 00000.jpg
| | |ββ 00001.jpg
| |ββ depth
| | |ββ 00000.jpg
| | |ββ 00001.jpg
| |ββ mask
| | |ββ 00000.jpg
| | |ββ 00001.jpg
COCO-WholeBody (Hand)
[DATASET]
@inproceedings{jin2020whole,
title={Whole-Body Human Pose Estimation in the Wild},
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2020}
}
For COCO-WholeBody dataset, images can be downloaded from COCO download, 2017 Train/Val is needed for COCO keypoints training and validation. Download COCO-WholeBody annotations for COCO-WholeBody annotations for Train / Validation (Google Drive). Download person detection result of COCO val2017 from OneDrive or GoogleDrive. Download and extract them under $MMPOSE/data, and make them look like this:
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ coco
β-- annotations
β β-- coco_wholebody_train_v1.0.json
β |-- coco_wholebody_val_v1.0.json
|-- person_detection_results
| |-- COCO_val2017_detections_AP_H_56_person.json
β-- train2017
β β-- 000000000009.jpg
β β-- 000000000025.jpg
β β-- 000000000030.jpg
β β-- ...
`-- val2017
β-- 000000000139.jpg
β-- 000000000285.jpg
β-- 000000000632.jpg
β-- ...
Please also install the latest version of Extended COCO API to support COCO-WholeBody evaluation:
pip install xtcocotools