Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import copy | |
import pytest | |
from mmcv import Config | |
from numpy.testing import assert_almost_equal | |
from mmpose.datasets import DATASETS | |
from tests.utils.data_utils import convert_db_to_output | |
def test_OneHand10K_dataset(): | |
dataset = 'OneHand10KDataset' | |
dataset_info = Config.fromfile( | |
'configs/_base_/datasets/onehand10k.py').dataset_info | |
dataset_class = DATASETS.get(dataset) | |
channel_cfg = dict( | |
num_output_channels=21, | |
dataset_joints=21, | |
dataset_channel=[ | |
[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, | |
18, 19, 20 | |
], | |
], | |
inference_channel=[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, | |
19, 20 | |
]) | |
data_cfg = dict( | |
image_size=[256, 256], | |
heatmap_size=[64, 64], | |
num_output_channels=channel_cfg['num_output_channels'], | |
num_joints=channel_cfg['dataset_joints'], | |
dataset_channel=channel_cfg['dataset_channel'], | |
inference_channel=channel_cfg['inference_channel']) | |
# Test | |
data_cfg_copy = copy.deepcopy(data_cfg) | |
_ = dataset_class( | |
ann_file='tests/data/onehand10k/test_onehand10k.json', | |
img_prefix='tests/data/onehand10k/', | |
data_cfg=data_cfg_copy, | |
pipeline=[], | |
dataset_info=dataset_info, | |
test_mode=True) | |
custom_dataset = dataset_class( | |
ann_file='tests/data/onehand10k/test_onehand10k.json', | |
img_prefix='tests/data/onehand10k/', | |
data_cfg=data_cfg_copy, | |
pipeline=[], | |
dataset_info=dataset_info, | |
test_mode=False) | |
assert custom_dataset.dataset_name == 'onehand10k' | |
assert custom_dataset.test_mode is False | |
assert custom_dataset.num_images == 4 | |
_ = custom_dataset[0] | |
results = convert_db_to_output(custom_dataset.db) | |
infos = custom_dataset.evaluate(results, metric=['PCK', 'EPE', 'AUC']) | |
assert_almost_equal(infos['PCK'], 1.0) | |
assert_almost_equal(infos['AUC'], 0.95) | |
assert_almost_equal(infos['EPE'], 0.0) | |
with pytest.raises(KeyError): | |
infos = custom_dataset.evaluate(results, metric='mAP') | |
def test_hand_coco_wholebody_dataset(): | |
dataset = 'HandCocoWholeBodyDataset' | |
dataset_info = Config.fromfile( | |
'configs/_base_/datasets/coco_wholebody_hand.py').dataset_info | |
dataset_class = DATASETS.get(dataset) | |
channel_cfg = dict( | |
num_output_channels=21, | |
dataset_joints=21, | |
dataset_channel=[ | |
[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, | |
18, 19, 20 | |
], | |
], | |
inference_channel=[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, | |
19, 20 | |
]) | |
data_cfg = dict( | |
image_size=[256, 256], | |
heatmap_size=[64, 64], | |
num_output_channels=channel_cfg['num_output_channels'], | |
num_joints=channel_cfg['dataset_joints'], | |
dataset_channel=channel_cfg['dataset_channel'], | |
inference_channel=channel_cfg['inference_channel']) | |
# Test | |
data_cfg_copy = copy.deepcopy(data_cfg) | |
_ = dataset_class( | |
ann_file='tests/data/coco/test_coco_wholebody.json', | |
img_prefix='tests/data/coco/', | |
data_cfg=data_cfg_copy, | |
pipeline=[], | |
dataset_info=dataset_info, | |
test_mode=True) | |
custom_dataset = dataset_class( | |
ann_file='tests/data/coco/test_coco_wholebody.json', | |
img_prefix='tests/data/coco/', | |
data_cfg=data_cfg_copy, | |
pipeline=[], | |
dataset_info=dataset_info, | |
test_mode=False) | |
assert custom_dataset.test_mode is False | |
assert custom_dataset.num_images == 4 | |
_ = custom_dataset[0] | |
results = convert_db_to_output(custom_dataset.db) | |
infos = custom_dataset.evaluate(results, metric=['PCK', 'EPE', 'AUC']) | |
assert_almost_equal(infos['PCK'], 1.0) | |
assert_almost_equal(infos['AUC'], 0.95) | |
assert_almost_equal(infos['EPE'], 0.0) | |
with pytest.raises(KeyError): | |
infos = custom_dataset.evaluate(results, metric='mAP') | |
def test_FreiHand2D_dataset(): | |
dataset = 'FreiHandDataset' | |
dataset_info = Config.fromfile( | |
'configs/_base_/datasets/freihand2d.py').dataset_info | |
dataset_class = DATASETS.get(dataset) | |
channel_cfg = dict( | |
num_output_channels=21, | |
dataset_joints=21, | |
dataset_channel=[ | |
[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, | |
18, 19, 20 | |
], | |
], | |
inference_channel=[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, | |
19, 20 | |
]) | |
data_cfg = dict( | |
image_size=[224, 224], | |
heatmap_size=[56, 56], | |
num_output_channels=channel_cfg['num_output_channels'], | |
num_joints=channel_cfg['dataset_joints'], | |
dataset_channel=channel_cfg['dataset_channel'], | |
inference_channel=channel_cfg['inference_channel']) | |
# Test | |
data_cfg_copy = copy.deepcopy(data_cfg) | |
_ = dataset_class( | |
ann_file='tests/data/freihand/test_freihand.json', | |
img_prefix='tests/data/freihand/', | |
data_cfg=data_cfg_copy, | |
pipeline=[], | |
dataset_info=dataset_info, | |
test_mode=True) | |
custom_dataset = dataset_class( | |
ann_file='tests/data/freihand/test_freihand.json', | |
img_prefix='tests/data/freihand/', | |
data_cfg=data_cfg_copy, | |
pipeline=[], | |
dataset_info=dataset_info, | |
test_mode=False) | |
assert custom_dataset.dataset_name == 'freihand' | |
assert custom_dataset.test_mode is False | |
assert custom_dataset.num_images == 8 | |
_ = custom_dataset[0] | |
results = convert_db_to_output(custom_dataset.db) | |
infos = custom_dataset.evaluate(results, metric=['PCK', 'EPE', 'AUC']) | |
assert_almost_equal(infos['PCK'], 1.0) | |
assert_almost_equal(infos['AUC'], 0.95) | |
assert_almost_equal(infos['EPE'], 0.0) | |
with pytest.raises(KeyError): | |
infos = custom_dataset.evaluate(results, metric='mAP') | |
def test_RHD2D_dataset(): | |
dataset = 'Rhd2DDataset' | |
dataset_info = Config.fromfile( | |
'configs/_base_/datasets/rhd2d.py').dataset_info | |
dataset_class = DATASETS.get(dataset) | |
channel_cfg = dict( | |
num_output_channels=21, | |
dataset_joints=21, | |
dataset_channel=[ | |
[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, | |
18, 19, 20 | |
], | |
], | |
inference_channel=[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, | |
19, 20 | |
]) | |
data_cfg = dict( | |
image_size=[256, 256], | |
heatmap_size=[64, 64], | |
num_output_channels=channel_cfg['num_output_channels'], | |
num_joints=channel_cfg['dataset_joints'], | |
dataset_channel=channel_cfg['dataset_channel'], | |
inference_channel=channel_cfg['inference_channel']) | |
# Test | |
data_cfg_copy = copy.deepcopy(data_cfg) | |
_ = dataset_class( | |
ann_file='tests/data/rhd/test_rhd.json', | |
img_prefix='tests/data/rhd/', | |
data_cfg=data_cfg_copy, | |
pipeline=[], | |
dataset_info=dataset_info, | |
test_mode=True) | |
custom_dataset = dataset_class( | |
ann_file='tests/data/rhd/test_rhd.json', | |
img_prefix='tests/data/rhd/', | |
data_cfg=data_cfg_copy, | |
pipeline=[], | |
dataset_info=dataset_info, | |
test_mode=False) | |
assert custom_dataset.dataset_name == 'rhd2d' | |
assert custom_dataset.test_mode is False | |
assert custom_dataset.num_images == 3 | |
_ = custom_dataset[0] | |
results = convert_db_to_output(custom_dataset.db) | |
infos = custom_dataset.evaluate(results, metric=['PCK', 'EPE', 'AUC']) | |
assert_almost_equal(infos['PCK'], 1.0) | |
assert_almost_equal(infos['AUC'], 0.95) | |
assert_almost_equal(infos['EPE'], 0.0) | |
with pytest.raises(KeyError): | |
infos = custom_dataset.evaluate(results, metric='mAP') | |
def test_Panoptic2D_dataset(): | |
dataset = 'PanopticDataset' | |
dataset_info = Config.fromfile( | |
'configs/_base_/datasets/panoptic_hand2d.py').dataset_info | |
dataset_class = DATASETS.get(dataset) | |
channel_cfg = dict( | |
num_output_channels=21, | |
dataset_joints=21, | |
dataset_channel=[ | |
[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, | |
18, 19, 20 | |
], | |
], | |
inference_channel=[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, | |
19, 20 | |
]) | |
data_cfg = dict( | |
image_size=[256, 256], | |
heatmap_size=[64, 64], | |
num_output_channels=channel_cfg['num_output_channels'], | |
num_joints=channel_cfg['dataset_joints'], | |
dataset_channel=channel_cfg['dataset_channel'], | |
inference_channel=channel_cfg['inference_channel']) | |
# Test | |
data_cfg_copy = copy.deepcopy(data_cfg) | |
_ = dataset_class( | |
ann_file='tests/data/panoptic/test_panoptic.json', | |
img_prefix='tests/data/panoptic/', | |
data_cfg=data_cfg_copy, | |
pipeline=[], | |
dataset_info=dataset_info, | |
test_mode=True) | |
custom_dataset = dataset_class( | |
ann_file='tests/data/panoptic/test_panoptic.json', | |
img_prefix='tests/data/panoptic/', | |
data_cfg=data_cfg_copy, | |
pipeline=[], | |
dataset_info=dataset_info, | |
test_mode=False) | |
assert custom_dataset.dataset_name == 'panoptic_hand2d' | |
assert custom_dataset.test_mode is False | |
assert custom_dataset.num_images == 4 | |
_ = custom_dataset[0] | |
results = convert_db_to_output(custom_dataset.db) | |
infos = custom_dataset.evaluate(results, metric=['PCKh', 'EPE', 'AUC']) | |
assert_almost_equal(infos['PCKh'], 1.0) | |
assert_almost_equal(infos['AUC'], 0.95) | |
assert_almost_equal(infos['EPE'], 0.0) | |
with pytest.raises(KeyError): | |
infos = custom_dataset.evaluate(results, metric='mAP') | |
def test_InterHand2D_dataset(): | |
dataset = 'InterHand2DDataset' | |
dataset_info = Config.fromfile( | |
'configs/_base_/datasets/interhand2d.py').dataset_info | |
dataset_class = DATASETS.get(dataset) | |
channel_cfg = dict( | |
num_output_channels=21, | |
dataset_joints=21, | |
dataset_channel=[ | |
[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, | |
18, 19, 20 | |
], | |
], | |
inference_channel=[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, | |
19, 20 | |
]) | |
data_cfg = dict( | |
image_size=[256, 256], | |
heatmap_size=[64, 64], | |
num_output_channels=channel_cfg['num_output_channels'], | |
num_joints=channel_cfg['dataset_joints'], | |
dataset_channel=channel_cfg['dataset_channel'], | |
inference_channel=channel_cfg['inference_channel']) | |
# Test | |
data_cfg_copy = copy.deepcopy(data_cfg) | |
_ = dataset_class( | |
ann_file='tests/data/interhand2.6m/test_interhand2.6m_data.json', | |
camera_file='tests/data/interhand2.6m/test_interhand2.6m_camera.json', | |
joint_file='tests/data/interhand2.6m/test_interhand2.6m_joint_3d.json', | |
img_prefix='tests/data/interhand2.6m/', | |
data_cfg=data_cfg_copy, | |
pipeline=[], | |
dataset_info=dataset_info, | |
test_mode=True) | |
custom_dataset = dataset_class( | |
ann_file='tests/data/interhand2.6m/test_interhand2.6m_data.json', | |
camera_file='tests/data/interhand2.6m/test_interhand2.6m_camera.json', | |
joint_file='tests/data/interhand2.6m/test_interhand2.6m_joint_3d.json', | |
img_prefix='tests/data/interhand2.6m/', | |
data_cfg=data_cfg_copy, | |
pipeline=[], | |
dataset_info=dataset_info, | |
test_mode=False) | |
assert custom_dataset.dataset_name == 'interhand2d' | |
assert custom_dataset.test_mode is False | |
assert custom_dataset.num_images == 4 | |
assert len(custom_dataset.db) == 6 | |
_ = custom_dataset[0] | |
results = convert_db_to_output(custom_dataset.db) | |
infos = custom_dataset.evaluate(results, metric=['PCK', 'EPE', 'AUC']) | |
print(infos, flush=True) | |
assert_almost_equal(infos['PCK'], 1.0) | |
assert_almost_equal(infos['AUC'], 0.95) | |
assert_almost_equal(infos['EPE'], 0.0) | |
with pytest.raises(KeyError): | |
infos = custom_dataset.evaluate(results, metric='mAP') | |
def test_InterHand3D_dataset(): | |
dataset = 'InterHand3DDataset' | |
dataset_info = Config.fromfile( | |
'configs/_base_/datasets/interhand3d.py').dataset_info | |
dataset_class = DATASETS.get(dataset) | |
channel_cfg = dict( | |
num_output_channels=42, | |
dataset_joints=42, | |
dataset_channel=[ | |
[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, | |
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, | |
34, 35, 36, 37, 38, 39, 40, 41 | |
], | |
], | |
inference_channel=[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, | |
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, | |
36, 37, 38, 39, 40, 41 | |
]) | |
data_cfg = dict( | |
image_size=[256, 256], | |
heatmap_size=[64, 64, 64], | |
heatmap3d_depth_bound=400.0, | |
heatmap_size_root=64, | |
root_depth_bound=400.0, | |
num_output_channels=channel_cfg['num_output_channels'], | |
num_joints=channel_cfg['dataset_joints'], | |
dataset_channel=channel_cfg['dataset_channel'], | |
inference_channel=channel_cfg['inference_channel']) | |
# Test | |
data_cfg_copy = copy.deepcopy(data_cfg) | |
_ = dataset_class( | |
ann_file='tests/data/interhand2.6m/test_interhand2.6m_data.json', | |
camera_file='tests/data/interhand2.6m/test_interhand2.6m_camera.json', | |
joint_file='tests/data/interhand2.6m/test_interhand2.6m_joint_3d.json', | |
img_prefix='tests/data/interhand2.6m/', | |
data_cfg=data_cfg_copy, | |
pipeline=[], | |
dataset_info=dataset_info, | |
test_mode=True) | |
custom_dataset = dataset_class( | |
ann_file='tests/data/interhand2.6m/test_interhand2.6m_data.json', | |
camera_file='tests/data/interhand2.6m/test_interhand2.6m_camera.json', | |
joint_file='tests/data/interhand2.6m/test_interhand2.6m_joint_3d.json', | |
img_prefix='tests/data/interhand2.6m/', | |
data_cfg=data_cfg_copy, | |
pipeline=[], | |
dataset_info=dataset_info, | |
test_mode=False) | |
assert custom_dataset.dataset_name == 'interhand3d' | |
assert custom_dataset.test_mode is False | |
assert custom_dataset.num_images == 4 | |
assert len(custom_dataset.db) == 4 | |
_ = custom_dataset[0] | |
results = convert_db_to_output( | |
custom_dataset.db, keys=['rel_root_depth', 'hand_type'], is_3d=True) | |
infos = custom_dataset.evaluate( | |
results, metric=['MRRPE', 'MPJPE', 'Handedness_acc']) | |
assert_almost_equal(infos['MRRPE'], 0.0, decimal=5) | |
assert_almost_equal(infos['MPJPE_all'], 0.0, decimal=5) | |
assert_almost_equal(infos['MPJPE_single'], 0.0, decimal=5) | |
assert_almost_equal(infos['MPJPE_interacting'], 0.0, decimal=5) | |
assert_almost_equal(infos['Handedness_acc'], 1.0) | |
with pytest.raises(KeyError): | |
infos = custom_dataset.evaluate(results, metric='mAP') | |