Spaces:
Sleeping
Sleeping
File size: 7,263 Bytes
f7f78a2 9898985 f7f78a2 6c48c9b f7f78a2 d8d0296 f7f78a2 cbc938b f7f78a2 d8d0296 f7f78a2 d8d0296 ae99e22 f7f78a2 6c48c9b f7f78a2 6c48c9b f7f78a2 6c48c9b f7f78a2 6c48c9b f7f78a2 ae99e22 f7f78a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
#!/usr/bin/env -S poetry run python
import os
import json
import streamlit as st
from openai import OpenAI
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Get the OpenAI API key from environment variables
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise ValueError("The OPENAI_API_KEY environment variable is not set.")
client = OpenAI()
def load_user_data(user_id):
file_path = os.path.join("data", "user_data", f"user_data_{user_id}.json")
if not os.path.exists(file_path):
return {}
with open(file_path, "r") as file:
return json.load(file)
def parseBill(data):
billDate = data.get("billDate")
billNo = data.get("billNo")
amountDue = data.get("amountDue")
extraCharge = data.get("extraCharge")
taxItems = data.get("taxItem", [])
subscribers = data.get("subscribers", [])
totalBillCosts = [{"categorie": t.get("cat"), "amount": t.get("amt")} for t in taxItems]
subscriberCosts = []
for sub in subscribers:
logicalResource = sub.get("logicalResource")
billSummaryItems = sub.get("billSummaryItem", [])
subscriberCosts.append({
"logicalResource": logicalResource,
"billSummaryItems": [
{"categorie": bsi.get("cat"), "amount": bsi.get("amt"), "name": bsi.get("name")}
for bsi in billSummaryItems
],
})
return {
"billDate": billDate,
"billNo": billNo,
"amountDue": amountDue,
"extraCharge": extraCharge,
"totalBillCosts": totalBillCosts,
"subscriberCosts": subscriberCosts
}
def check_related_keys(question, user_id):
user_data = load_user_data(user_id)
bill_keys = set()
for bill in user_data.get("bills", []):
bill_keys.update(bill.keys())
return [key for key in bill_keys if key.lower() in question.lower()]
def process_query(query, user_id, model):
user_data = load_user_data(user_id)
bill_info = user_data.get("bills", [])
related_keys = check_related_keys(query, user_id)
related_keys_str = ", ".join(related_keys) if related_keys else "N/A"
if related_keys_str != "N/A":
context = (
f"Citeste informatiile despre costrurile in lei facturate din dictionar: {bill_info} "
f"si raspunde la intrebarea: '{query}' dar numai cu info legate de: {related_keys_str}"
)
else:
context = (
f"Citeste informatiile despre costrurile in lei facturate din dictionar: {bill_info} "
f"si raspunde la intrebarea: '{query}' dar numai cu info legate de factura"
)
max_input_length = 5550
st.write(f"Context:\n{context}")
st.write(f"Context size: {len(context)} characters")
if len(context) > max_input_length:
st.warning("Prea multe caractere în context, solicitarea nu va fi trimisă.")
return None
# Update this part to run the chosen model
if model == "4o":
# Code to run model 4o
st.write("Running model 4o")
elif model == "4o-mini":
# Code to run model 4o-mini
st.write("Running model 4o-mini")
return context
def main():
st.title("Telecom Bill Chat with LLM Agent")
# Create a sidebar menu to choose between models
model_name = st.sidebar.selectbox("Choose OpenAI Model", ["gpt-4o", "gpt-4o-mini"])
if "user_id" not in st.session_state:
st.session_state.user_id = None
user_id = st.sidebar.text_input("Introdu numărul de telefon:")
if user_id and user_id != st.session_state.user_id:
data = load_user_data(user_id)
if data:
st.session_state.user_id = user_id
st.success("Utilizator găsit!")
else:
st.warning("Nu am găsit date pentru acest ID. Încărcați o factură PDF la nevoie.")
st.session_state.user_id = user_id
uploaded_file = st.file_uploader("Încarcă factura JSON", type="json")
if uploaded_file and st.session_state.user_id:
bill_data = json.load(uploaded_file)
parsed_bill = parseBill(bill_data)
existing_data = load_user_data(st.session_state.user_id)
if "bills" not in existing_data:
existing_data["bills"] = []
existing_data["bills"].append(parsed_bill)
file_path = os.path.join("data", "user_data", f"user_data_{st.session_state['user_id']}.json")
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "w") as file:
json.dump(existing_data, file)
st.success("Factura a fost încărcată și salvată cu succes!")
if st.session_state.user_id:
data = load_user_data(st.session_state.user_id)
st.write(f"Phone Number: {st.session_state.user_id}")
st.write("Facturi existente:")
for bill in data.get("bills", []):
st.write(bill)
else:
st.info("Introduceți un ID și/sau încărcați o factură JSON pentru a continua.")
# Initialize conversation in the session state
# "context_prompt_added" indicates whether we've added the specialized "bill info" context yet.
if "messages" not in st.session_state:
st.session_state["messages"] = [
{"role": "assistant", "content": "Cu ce te pot ajuta?"}
]
if "context_prompt_added" not in st.session_state:
st.session_state.context_prompt_added = False
st.write("---")
st.subheader("Chat")
for msg in st.session_state["messages"]:
st.chat_message(msg["role"]).write(msg["content"])
if prompt := st.chat_input("Introduceți întrebarea aici:"):
if not st.session_state.user_id:
st.error("Trebuie să introduceți un număr de telefon valid sau să încărcați date.")
return
# If the context prompt hasn't been added yet, build & inject it once;
# otherwise, just add the user's raw question.
if not st.session_state.context_prompt_added:
final_prompt = process_query(prompt, st.session_state["user_id"])
if final_prompt is None:
st.stop()
st.session_state["messages"].append({"role": "user", "content": final_prompt})
st.session_state.context_prompt_added = True
else:
st.session_state["messages"].append({"role": "user", "content": prompt})
# Display the latest user message in the chat
st.chat_message("user").write(st.session_state["messages"][-1]["content"])
# Now call GPT-4 with the entire conversation
completion = client.chat.completions.create(
model=model_name,
messages=st.session_state["messages"]
)
response_text = completion.choices[0].message.content.strip()
st.session_state["messages"].append({"role": "assistant", "content": response_text})
st.chat_message("assistant").write(response_text)
if hasattr(completion, "usage"):
st.write("Prompt tokens:", completion.usage.prompt_tokens)
st.write("Completion tokens:", completion.usage.completion_tokens)
st.write("Total tokens:", completion.usage.total_tokens)
if __name__ == "__main__":
main() |