File size: 7,263 Bytes
f7f78a2
 
 
 
 
 
9898985
 
 
 
 
 
 
 
 
f7f78a2
 
 
 
 
 
 
 
 
 
6c48c9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7f78a2
 
 
 
 
 
 
 
d8d0296
f7f78a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbc938b
f7f78a2
 
 
 
 
 
 
d8d0296
 
 
 
 
 
 
 
f7f78a2
 
 
 
 
d8d0296
ae99e22
f7f78a2
 
 
 
 
 
 
 
 
 
 
 
 
6c48c9b
f7f78a2
6c48c9b
 
f7f78a2
 
 
6c48c9b
f7f78a2
 
 
 
 
 
 
 
 
 
 
 
 
6c48c9b
f7f78a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae99e22
f7f78a2
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#!/usr/bin/env -S poetry run python

import os
import json
import streamlit as st
from openai import OpenAI
from dotenv import load_dotenv

# Load environment variables from .env file
load_dotenv()

# Get the OpenAI API key from environment variables
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
    raise ValueError("The OPENAI_API_KEY environment variable is not set.")

client = OpenAI()

def load_user_data(user_id):
    file_path = os.path.join("data", "user_data", f"user_data_{user_id}.json")
    if not os.path.exists(file_path):
        return {}
    with open(file_path, "r") as file:
        return json.load(file)

def parseBill(data):
    billDate = data.get("billDate")
    billNo = data.get("billNo")
    amountDue = data.get("amountDue")
    extraCharge = data.get("extraCharge")
    taxItems = data.get("taxItem", [])
    subscribers = data.get("subscribers", [])

    totalBillCosts = [{"categorie": t.get("cat"), "amount": t.get("amt")} for t in taxItems]
    subscriberCosts = []
    for sub in subscribers:
        logicalResource = sub.get("logicalResource")
        billSummaryItems = sub.get("billSummaryItem", [])
        subscriberCosts.append({
            "logicalResource": logicalResource,
            "billSummaryItems": [
                {"categorie": bsi.get("cat"), "amount": bsi.get("amt"), "name": bsi.get("name")}
                for bsi in billSummaryItems
            ],
        })

    return {
        "billDate": billDate,
        "billNo": billNo,
        "amountDue": amountDue,
        "extraCharge": extraCharge,
        "totalBillCosts": totalBillCosts,
        "subscriberCosts": subscriberCosts
    }

def check_related_keys(question, user_id):
    user_data = load_user_data(user_id)
    bill_keys = set()
    for bill in user_data.get("bills", []):
        bill_keys.update(bill.keys())
    return [key for key in bill_keys if key.lower() in question.lower()]

def process_query(query, user_id, model):
    user_data = load_user_data(user_id)
    bill_info = user_data.get("bills", [])
    related_keys = check_related_keys(query, user_id)
    related_keys_str = ", ".join(related_keys) if related_keys else "N/A"

    if related_keys_str != "N/A":
        context = (
            f"Citeste informatiile despre costrurile in lei facturate din dictionar: {bill_info} "
            f"si raspunde la intrebarea: '{query}' dar numai cu info legate de: {related_keys_str}"
        )
    else:
        context = (
            f"Citeste informatiile despre costrurile in lei facturate din dictionar: {bill_info} "
            f"si raspunde la intrebarea: '{query}' dar numai cu info legate de factura"
        )

    max_input_length = 5550
    st.write(f"Context:\n{context}")
    st.write(f"Context size: {len(context)} characters")

    if len(context) > max_input_length:
        st.warning("Prea multe caractere în context, solicitarea nu va fi trimisă.")
        return None

    # Update this part to run the chosen model
    if model == "4o":
        # Code to run model 4o
        st.write("Running model 4o")
    elif model == "4o-mini":
        # Code to run model 4o-mini
        st.write("Running model 4o-mini")

    return context

def main():
    st.title("Telecom Bill Chat with LLM Agent")

    # Create a sidebar menu to choose between models
    model_name = st.sidebar.selectbox("Choose OpenAI Model", ["gpt-4o", "gpt-4o-mini"])
    if "user_id" not in st.session_state:
        st.session_state.user_id = None

    user_id = st.sidebar.text_input("Introdu numărul de telefon:")
    if user_id and user_id != st.session_state.user_id:
        data = load_user_data(user_id)
        if data:
            st.session_state.user_id = user_id
            st.success("Utilizator găsit!")
        else:
            st.warning("Nu am găsit date pentru acest ID. Încărcați o factură PDF la nevoie.")
            st.session_state.user_id = user_id

    uploaded_file = st.file_uploader("Încarcă factura JSON", type="json")
    if uploaded_file and st.session_state.user_id:
        bill_data = json.load(uploaded_file)
        parsed_bill = parseBill(bill_data)
        existing_data = load_user_data(st.session_state.user_id)
        if "bills" not in existing_data:
            existing_data["bills"] = []
        existing_data["bills"].append(parsed_bill)
        file_path = os.path.join("data", "user_data", f"user_data_{st.session_state['user_id']}.json")
        os.makedirs(os.path.dirname(file_path), exist_ok=True)
        with open(file_path, "w") as file:
            json.dump(existing_data, file)
        st.success("Factura a fost încărcată și salvată cu succes!")

    if st.session_state.user_id:
        data = load_user_data(st.session_state.user_id)
        st.write(f"Phone Number: {st.session_state.user_id}")
        st.write("Facturi existente:")
        for bill in data.get("bills", []):
            st.write(bill)
    else:
        st.info("Introduceți un ID și/sau încărcați o factură JSON pentru a continua.")

    # Initialize conversation in the session state
    # "context_prompt_added" indicates whether we've added the specialized "bill info" context yet.
    if "messages" not in st.session_state:
        st.session_state["messages"] = [
            {"role": "assistant", "content": "Cu ce te pot ajuta?"}
        ]
    if "context_prompt_added" not in st.session_state:
        st.session_state.context_prompt_added = False

    st.write("---")
    st.subheader("Chat")

    for msg in st.session_state["messages"]:
        st.chat_message(msg["role"]).write(msg["content"])

    if prompt := st.chat_input("Introduceți întrebarea aici:"):
        if not st.session_state.user_id:
            st.error("Trebuie să introduceți un număr de telefon valid sau să încărcați date.")
            return

        # If the context prompt hasn't been added yet, build & inject it once;
        # otherwise, just add the user's raw question.
        if not st.session_state.context_prompt_added:
            final_prompt = process_query(prompt, st.session_state["user_id"])
            if final_prompt is None:
                st.stop()
            st.session_state["messages"].append({"role": "user", "content": final_prompt})
            st.session_state.context_prompt_added = True
        else:
            st.session_state["messages"].append({"role": "user", "content": prompt})

        # Display the latest user message in the chat
        st.chat_message("user").write(st.session_state["messages"][-1]["content"])

        # Now call GPT-4 with the entire conversation
        completion = client.chat.completions.create(
            model=model_name,
            messages=st.session_state["messages"]
        )
        response_text = completion.choices[0].message.content.strip()

        st.session_state["messages"].append({"role": "assistant", "content": response_text})
        st.chat_message("assistant").write(response_text)

        if hasattr(completion, "usage"):
            st.write("Prompt tokens:", completion.usage.prompt_tokens)
            st.write("Completion tokens:", completion.usage.completion_tokens)
            st.write("Total tokens:", completion.usage.total_tokens)

if __name__ == "__main__":
    main()