Spaces:
Sleeping
Sleeping
File size: 14,138 Bytes
f7f78a2 9898985 f7f78a2 38e0e74 f7f78a2 38e0e74 f7f78a2 38e0e74 f7f78a2 38e0e74 f7f78a2 6c48c9b 38e0e74 2123b97 6c48c9b 38e0e74 2123b97 38e0e74 2123b97 6c48c9b 29eb3ed 7c6c740 a6d744f 7c6c740 2123b97 29eb3ed 6c48c9b f7f78a2 aed8428 f7f78a2 38e0e74 f7f78a2 2123b97 aed8428 f7f78a2 aed8428 38e0e74 f7f78a2 aed8428 f7f78a2 aed8428 f7f78a2 a6d744f 2123b97 f7f78a2 d8d0296 38e0e74 d8d0296 38e0e74 d8d0296 f7f78a2 7c6c740 aed8428 f7f78a2 29eb3ed f7f78a2 d8d0296 38e0e74 f7f78a2 0ea4bb9 7c6c740 aed8428 f7f78a2 7c6c740 f7f78a2 7c6c740 f7f78a2 7c6c740 f7f78a2 7c6c740 aed8428 7c6c740 29eb3ed a6d744f 29eb3ed 7c6c740 aed8428 7c6c740 29eb3ed 7c6c740 f7f78a2 7c6c740 f7f78a2 aeb2778 f7f78a2 29eb3ed f7f78a2 ae99e22 f7f78a2 7c6c740 aed8428 7c6c740 aed8428 7c6c740 f7f78a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
import os
import json
import streamlit as st
from openai import OpenAI
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Get the OpenAI API key from environment variables
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise ValueError("The OPENAI_API_KEY environment variable is not set.")
client = OpenAI()
def load_user_data(user_id):
file_path = os.path.join(os.getcwd(), "data", "user_data", f"user_data_{user_id}.json")
#st.write(f"Loading user data from: {file_path}")
#st.write(f"Current working directory: {os.getcwd()}")
#Verify if the file exists
if not os.path.exists(file_path):
#st.write("File does not exist.")
return {}
try:
with open(file_path, "r") as file:
data = json.load(file)
#st.write(f"Loaded data: {data}")
return data
except json.JSONDecodeError:
st.write("Error decoding JSON.")
return {}
except Exception as e:
st.write(f"An error occurred: {e}")
return {}
def save_user_data(user_id, data):
file_path = os.path.join("data", "user_data", f"user_data_{user_id}.json")
os.makedirs(os.path.dirname(file_path), exist_ok=True)
with open(file_path, "w") as file:
json.dump(data, file)
def parseBill(data):
billDate = data.get("billDate")
billNo = data.get("billNo")
amountDue = data.get("amountDue")
extraCharge = data.get("extraCharge")
taxItems = data.get("taxItem", [])
subscribers = data.get("subscribers", [])
totalBillCosts = [{"categorie": t.get("cat"), "amount": t.get("amt")} for t in taxItems]
subscriberCosts = []
categories = set()
names = set()
for tax in taxItems:
categories.add(tax.get("cat"))
for sub in subscribers:
logicalResource = sub.get("logicalResource")
billSummaryItems = sub.get("billSummaryItem", [])
for item in billSummaryItems:
try:
categories.add(item["cat"]),
categories.add(item["name"]),
names.add(item["name"])
except KeyError:
continue
subscriberCosts.append({
"Numar telefon": logicalResource,
"Categorie cost": item["cat"],
"Cost": item["name"],
"Valoare": item["amt"]
})
#st.write(f"Costuri totale factura: {totalBillCosts}")
#st.write(f"Costuri utilizatori: {subscriberCosts}")
#st.write(f"Categorii: {categories}")
return {
"Data factura": billDate,
"Serie numar factura": billNo,
"Total de plata": amountDue,
"Costuri suplimentare": extraCharge,
"Total plata factura": totalBillCosts,
"Costuri utilizatori": subscriberCosts,
"Entities": list(categories),
"Costuri": list(names)
}
def check_related_keys2(question, user_id):
user_data = load_user_data(user_id)
categories = set()
for bill in user_data.get("bills", []):
categories.update(bill.get("Entities", []))
#st.write(f"Entities: {list(categories)}")
#st.write(f"Question: {question}"),
return [category for category in list(categories) if question in category]
def check_related_keys3(question, user_id):
user_data = load_user_data(user_id)
categories = set()
for bill in user_data.get("bills", []):
categories.update(bill.get("categories", []))
related_categories = []
for category in list(categories):
st.write(f"Entity: {category}")
if question in category:
related_categories.append(category)
return related_categories
def check_related_keys(question, user_id):
user_data = load_user_data(user_id)
entities = set()
for bill in user_data.get("bills", []):
entities.update(bill.get("Entities", []))
#st.write(f"Entities: {list(entities)}")
#st.write(f"Question: {question}")
related_entities = [entity for entity in entities if entity.lower() in question.lower()]
#st.write(f"Related Entities: {related_entities}")
return related_entities
def process_query(query, user_id, model_name):
user_data = load_user_data(user_id)
bill_info = user_data.get("bills", [])
related_keys = check_related_keys(query, user_id)
related_keys_str = ", ".join(related_keys) if related_keys else "N/A"
if related_keys_str != "N/A":
context = (
f"- Ca asistent virtual, ai acces la informatii despre costurile facturate in lei din factura.\n"
f"- Citeste informatiile despre costruri din json: \n"
f" {bill_info}\n"
f"- Raspunde la urmatoarea intrebare a clientului: :blue['{query}']\n"
f"- In special cu info legate de: :red[{related_keys_str}].\n"
f"- Pentru orice alt subiect raspunde ca nu poti oferi decat informatii despre facturi. Sugereaza ca intrebarea sa fie legata doar de factura si costuri.\n"
f"- Folosesete contextul pentru a raspunde la intrebare.\n"
f"- Daca nu ai suficiente informatii, raspunde ca nu ai suficiente informatii.\n"
f"- Raspunde pe un ton calm, prietenos si profesionist, niciodata jignitor."
)
else:
context = (
f"- Ca asistent virtual, ai acces la informatii despre costurile facturate in lei din factura.\n"
f"- Citeste informatiile despre costruri din json: \n"
f" {bill_info}\n"
f"- Raspunde la urmatoarea intrebare a clientului: :blue['{query}']\n"
f"- In special cu info legate de :red[factura].\n"
f"- Pentru orice alt subiect raspunde ca nu poti oferi decat informatii despre facturi. Sugereaza ca intrebarea sa fie legata doar de factura si costuri.\n"
f"- Folosesete contextul pentru a raspunde la intrebare.\n"
f"- Daca nu ai suficiente informatii, raspunde ca nu ai suficiente informatii.\n"
f"- Raspunde pe un ton calm, prietenos si profesionist, niciodata jignitor."
)
max_input_length = 7550
#st.write(f"Context:\n{context}")
st.write(f"Context size: {len(context)} characters")
if len(context) > max_input_length:
st.warning("Prea multe caractere în context, solicitarea nu va fi trimisă.")
return None
# Update this part to run the chosen model
if model_name == "gpt-4o-mini":
# Code to run model 4o mini
st.write("Running model GPT-4o-mini")
elif model_name == "gpt-4o":
# Code to run model 4o
st.write("Running model GPT-4o")
return context
# import the datetime class from the datetime module
from datetime import datetime
def log_conversation(user_id, user_query, assistant_response, tokens, cost):
log_entry = {
"timestamp": datetime.now().isoformat(),
"user_id": user_id,
"user_query": user_query,
"assistant_response": assistant_response,
"tokens": tokens,
"cost": cost
}
log_file_path = os.path.join("logs", "conversation_logs.json")
os.makedirs(os.path.dirname(log_file_path), exist_ok=True)
if os.path.exists(log_file_path):
with open(log_file_path, "r") as log_file:
logs = json.load(log_file)
else:
logs = []
logs.append(log_entry)
with open(log_file_path, "w") as log_file:
json.dump(logs, log_file, indent=4)
def main():
st.title("Bill info LLM Agent (OpenAI)")
st.image("https://miro.medium.com/v2/resize:fit:100/format:webp/1*NfE0G4nEj4xX7Z_8dSx83g.png")
# Create a sidebar menu to choose between models
model_name = st.sidebar.selectbox("Choose OpenAI Model", ["gpt-4o-mini", "gpt-4o"])
if "user_id" not in st.session_state:
st.session_state.user_id = None
user_id = st.sidebar.text_input("Introdu numărul de telefon:", placeholder="Incearca 0724077190")
st.session_state.user_data = None
if user_id and user_id != st.session_state.user_id:
data = load_user_data(user_id)
st.session_state.user_data = data
if data:
st.session_state.user_id = user_id
st.success("Utilizator găsit!")
st.write(f"Numar telefon: {st.session_state.user_id}")
st.session_state.user_data = data
else:
st.warning("Nu am găsit date pentru acest ID.")
st.warning("Încărcați o factură json.")
st.session_state.user_id = user_id
st.session_state.user_data = None
# If the user has no data yet Show the upload (st.file_uploader...) dialog,
# If the user has stored data in data\user_data\"user_data{user_id}.json, display the existing bills data - st.write(bill) but compacted
if st.session_state.user_data:
st.write("Facturi existente (extras):")
for bill in st.session_state.user_data.get("bills", []):
st.write({
"Data factura": bill.get("Data factura"),
"Serie numar factura": bill.get("Serie numar factura"),
"Total de plata": bill.get("Total de plata"),
"Costuri suplimentare": bill.get("Costuri suplimentare")
})
# Display entities found in user data
st.write("Entități găsite în datele utilizatorului:")
entities = set()
for bill in st.session_state.user_data.get("bills", []):
entities.update(bill.get("Entities", []))
st.write(list(entities))
if not st.session_state.user_data:
uploaded_file = st.file_uploader("Incarca factura", type="json")
if uploaded_file and st.session_state.user_id:
bill_data = json.load(uploaded_file)
parsed_bill = parseBill(bill_data)
existing_data = load_user_data(st.session_state.user_id)
# Check if the billNo already exists in the existing data
existing_bill_nos = [bill.get("Data factura") for bill in existing_data.get("bills", [])]
if parsed_bill.get("Data factura") in existing_bill_nos:
st.warning("Factură existentă.")
else:
if "bills" not in existing_data:
existing_data["bills"] = []
existing_data["bills"].append(parsed_bill)
save_user_data(st.session_state.user_id, existing_data)
st.success("Factura a fost încărcată și salvată cu succes!")
# Initialize conversation in the session state
# "context_prompt_added" indicates whether we've added the specialized "bill info" context yet.
if "messages" not in st.session_state:
st.session_state["messages"] = [
{"role": "assistant", "content": "Cu ce te pot ajuta?"}
]
if "context_prompt_added" not in st.session_state:
st.session_state.context_prompt_added = False
st.write("---")
st.subheader("Chat")
for msg in st.session_state["messages"]:
st.chat_message(msg["role"]).write(msg["content"])
if prompt := st.chat_input("Introduceți întrebarea aici:"):
if not st.session_state.user_id:
st.error("Trebuie să introduci un număr de telefon valid sau să încarci date.")
return
# If the context prompt hasn't been added yet, build & inject it once;
# otherwise, just add the user's raw question.
if not st.session_state.context_prompt_added:
final_prompt = process_query(prompt, st.session_state["user_id"], model_name)
if final_prompt is None:
st.stop()
st.session_state["messages"].append({"role": "user", "content": final_prompt})
st.session_state.context_prompt_added = True
else:
st.session_state["messages"].append({"role": "user", "content": prompt})
# Display the latest user message in the chat
st.chat_message("user").write(st.session_state["messages"][-1]["content"])
# Display the related keys
related_keys = check_related_keys(prompt, st.session_state["user_id"])
st.write("Focus pe entitatile:", related_keys)
# Now call GPT-4 with the entire conversation
completion = client.chat.completions.create(
model=model_name,
messages=st.session_state["messages"]
)
response_text = completion.choices[0].message.content.strip()
st.session_state["messages"].append({"role": "assistant", "content": response_text})
st.chat_message("assistant").write(response_text)
if hasattr(completion, "usage"):
st.write("Prompt tokens:", completion.usage.prompt_tokens)
st.write("Completion tokens:", completion.usage.completion_tokens)
st.write("Total tokens:", completion.usage.total_tokens)
# Estimate cost per conversation (find the OpenAI costs for gpt-4o and gpt-4o-mini model per token)
prompt_tokens = completion.usage.prompt_tokens
completion_tokens = completion.usage.completion_tokens
total_tokens = completion.usage.total_tokens
# Estimate cost per conversation
if model_name == "gpt-4o":
cost_per_token = 0.03 / 1000 # $0.03 per 1,000 tokens
elif model_name == "gpt-4o-mini":
cost_per_token = 0.015 / 1000 # $0.015 per 1,000 tokens
estimated_cost = total_tokens * cost_per_token
#st.write("Estimated cost:", estimated_cost)
# Log the conversation
log_conversation(
st.session_state["user_id"],
prompt,
response_text,
{
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": total_tokens,
"estimated_cost": estimated_cost
},
estimated_cost
)
if __name__ == "__main__":
main() |