Spaces:
Sleeping
Sleeping
# Copyright (c) Alibaba Cloud. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
"""A simple web interactive chat demo based on gradio.""" | |
from argparse import ArgumentParser | |
from threading import Thread | |
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
DEFAULT_CKPT_PATH = "Qwen/Qwen2.5-7B-Instruct" | |
def _get_args(): | |
parser = ArgumentParser(description="Qwen2.5-Instruct web chat demo.") | |
parser.add_argument( | |
"-c", | |
"--checkpoint-path", | |
type=str, | |
default=DEFAULT_CKPT_PATH, | |
help="Checkpoint name or path, default to %(default)r", | |
) | |
parser.add_argument( | |
"--cpu-only", action="store_true", help="Run demo with CPU only" | |
) | |
parser.add_argument( | |
"--share", | |
action="store_true", | |
default=False, | |
help="Create a publicly shareable link for the interface.", | |
) | |
parser.add_argument( | |
"--inbrowser", | |
action="store_true", | |
default=False, | |
help="Automatically launch the interface in a new tab on the default browser.", | |
) | |
parser.add_argument( | |
"--server-port", type=int, default=8000, help="Demo server port." | |
) | |
parser.add_argument( | |
"--server-name", type=str, default="127.0.0.1", help="Demo server name." | |
) | |
args = parser.parse_args() | |
return args | |
def _load_model_tokenizer(args): | |
tokenizer = AutoTokenizer.from_pretrained( | |
args.checkpoint_path, | |
resume_download=True, | |
) | |
if args.cpu_only: | |
device_map = "cpu" | |
else: | |
device_map = "auto" | |
model = AutoModelForCausalLM.from_pretrained( | |
args.checkpoint_path, | |
torch_dtype="auto", | |
device_map=device_map, | |
resume_download=True, | |
).eval() | |
model.generation_config.max_new_tokens = 2048 # For chat. | |
return model, tokenizer | |
def _chat_stream(model, tokenizer, query, history): | |
conversation = [] | |
for query_h, response_h in history: | |
conversation.append({"role": "user", "content": query_h}) | |
conversation.append({"role": "assistant", "content": response_h}) | |
conversation.append({"role": "user", "content": query}) | |
input_text = tokenizer.apply_chat_template( | |
conversation, | |
add_generation_prompt=True, | |
tokenize=False, | |
) | |
inputs = tokenizer([input_text], return_tensors="pt").to(model.device) | |
streamer = TextIteratorStreamer( | |
tokenizer=tokenizer, skip_prompt=True, timeout=60.0, skip_special_tokens=True | |
) | |
generation_kwargs = { | |
**inputs, | |
"streamer": streamer, | |
} | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
for new_text in streamer: | |
yield new_text | |
def _gc(): | |
import gc | |
gc.collect() | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
def _launch_demo(args, model, tokenizer): | |
def predict(_query, _chatbot, _task_history): | |
print(f"User: {_query}") | |
_chatbot.append((_query, "")) | |
full_response = "" | |
response = "" | |
for new_text in _chat_stream(model, tokenizer, _query, history=_task_history): | |
response += new_text | |
_chatbot[-1] = (_query, response) | |
yield _chatbot | |
full_response = response | |
print(f"History: {_task_history}") | |
_task_history.append((_query, full_response)) | |
print(f"Qwen: {full_response}") | |
def regenerate(_chatbot, _task_history): | |
if not _task_history: | |
yield _chatbot | |
return | |
item = _task_history.pop(-1) | |
_chatbot.pop(-1) | |
yield from predict(item[0], _chatbot, _task_history) | |
def reset_user_input(): | |
return gr.update(value="") | |
def reset_state(_chatbot, _task_history): | |
_task_history.clear() | |
_chatbot.clear() | |
_gc() | |
return _chatbot | |
with gr.Blocks() as demo: | |
gr.Markdown("""\ | |
<p align="center"><img src="https://qianwen-res.oss-accelerate-overseas.aliyuncs.com/assets/logo/qwen2.5_logo.png" style="height: 120px"/><p>""") | |
gr.Markdown( | |
"""\ | |
<center><font size=3>This WebUI is based on Qwen2.5-Instruct, developed by Alibaba Cloud. \ | |
(本WebUI基于Qwen2.5-Instruct打造,实现聊天机器人功能。)</center>""" | |
) | |
gr.Markdown("""\ | |
<center><font size=4> | |
Qwen2.5-7B-Instruct <a href="https://modelscope.cn/models/qwen/Qwen2.5-7B-Instruct/summary">🤖 </a> | | |
<a href="https://huggingface.co/Qwen/Qwen2.5-7B-Instruct">🤗</a>  | | |
Qwen2.5-32B-Instruct <a href="https://modelscope.cn/models/qwen/Qwen2.5-32B-Instruct/summary">🤖 </a> | | |
<a href="https://huggingface.co/Qwen/Qwen2.5-32B-Instruct">🤗</a>  | | |
Qwen2.5-72B-Instruct <a href="https://modelscope.cn/models/qwen/Qwen2.5-72B-Instruct/summary">🤖 </a> | | |
<a href="https://huggingface.co/Qwen/Qwen2.5-72B-Instruct">🤗</a>  | | |
 <a href="https://github.com/QwenLM/Qwen2.5">Github</a></center>""") | |
chatbot = gr.Chatbot(label="Qwen", elem_classes="control-height") | |
query = gr.Textbox(lines=2, label="Input") | |
task_history = gr.State([]) | |
with gr.Row(): | |
empty_btn = gr.Button("🧹 Clear History (清除历史)") | |
submit_btn = gr.Button("🚀 Submit (发送)") | |
regen_btn = gr.Button("🤔️ Regenerate (重试)") | |
submit_btn.click( | |
predict, [query, chatbot, task_history], [chatbot], show_progress=True | |
) | |
submit_btn.click(reset_user_input, [], [query]) | |
empty_btn.click( | |
reset_state, [chatbot, task_history], outputs=[chatbot], show_progress=True | |
) | |
regen_btn.click( | |
regenerate, [chatbot, task_history], [chatbot], show_progress=True | |
) | |
gr.Markdown("""\ | |
<font size=2>Note: This demo is governed by the original license of Qwen2.5. \ | |
We strongly advise users not to knowingly generate or allow others to knowingly generate harmful content, \ | |
including hate speech, violence, pornography, deception, etc. \ | |
(注:本演示受Qwen2.5的许可协议限制。我们强烈建议,用户不应传播及不应允许他人传播以下内容,\ | |
包括但不限于仇恨言论、暴力、色情、欺诈相关的有害信息。)""") | |
demo.queue().launch( | |
share=args.share, | |
inbrowser=args.inbrowser, | |
server_port=args.server_port, | |
server_name=args.server_name, | |
) | |
def main(): | |
args = _get_args() | |
model, tokenizer = _load_model_tokenizer(args) | |
_launch_demo(args, model, tokenizer) | |
if __name__ == "__main__": | |
main() | |