File size: 8,203 Bytes
cf5e123
 
 
 
 
 
 
 
 
 
3d38722
 
db7f523
 
5ec174c
db7f523
cf5e123
 
 
 
 
 
5f6fa02
cf5e123
 
db7f523
cf5e123
 
db7f523
 
cf5e123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ec174c
cf5e123
 
 
5ec174c
db7f523
 
5ec174c
cf5e123
5ec174c
 
 
 
 
 
 
 
 
 
 
 
 
3491ea6
 
 
5ec174c
3491ea6
 
 
 
 
5ec174c
db7f523
5ec174c
 
 
 
 
 
 
 
 
 
 
 
cf5e123
5ec174c
 
 
 
db7f523
 
 
ae6af5e
3491ea6
ae6af5e
db7f523
ae6af5e
 
 
 
 
 
 
 
 
 
db7f523
ae6af5e
cf5e123
3d38722
 
 
 
 
 
 
 
 
 
 
 
cf5e123
 
 
 
 
 
 
 
 
 
 
 
 
 
db7f523
 
cf5e123
db7f523
cf5e123
db7f523
 
 
 
 
 
 
 
7ec8702
 
 
 
 
 
 
 
 
5ec174c
db7f523
3d38722
 
 
 
 
 
 
 
ae6af5e
db7f523
 
3d38722
db7f523
 
3d38722
 
 
 
 
 
 
 
 
 
 
 
5ec174c
 
 
 
 
 
cf5e123
5ec174c
cf5e123
 
db7f523
3d38722
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import gradio as gr

from langchain_astradb import AstraDBVectorStore

from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough, RunnableLambda
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
from langchain_openai import OpenAIEmbeddings, ChatOpenAI

from elevenlabs import VoiceSettings
from elevenlabs.client import ElevenLabs
from openai import OpenAI

from json import loads as json_loads
import time
import os

prompt_template = os.environ.get("PROMPT_TEMPLATE")

prompt = ChatPromptTemplate.from_messages([('system', prompt_template)])

AI = True

def ai_setup():
    global llm, prompt_chain, oai_client
    
    if AI:
        oai_client = OpenAI()
        llm = ChatOpenAI(model = "gpt-4o", temperature=0.8)
        embedding = OpenAIEmbeddings()
        vstore = AstraDBVectorStore(
            embedding=embedding,
            collection_name=os.environ.get("ASTRA_DB_COLLECTION"),
            token=os.environ.get("ASTRA_DB_APPLICATION_TOKEN"),
            api_endpoint=os.environ.get("ASTRA_DB_API_ENDPOINT"),
        )

        retriever = vstore.as_retriever(search_kwargs={'k': 10})
    else:
        retriever = RunnableLambda(just_read)

    prompt_chain = (
        {"context": retriever, "question": RunnablePassthrough()}
        | RunnableLambda(format_context) 
        | prompt
        # | llm
        # | StrOutputParser()
    )

def group_and_sort(documents):
    grouped = {}
    for document in documents:
        title = document.metadata["Title"]
        docs = grouped.get(title, [])
        grouped[title] = docs
        
        docs.append((document.page_content, document.metadata["range"]))
    
    for title, values in grouped.items():
        values.sort(key=lambda doc:doc[1][0])

    for title in grouped:
        text = ''
        prev_last = 0
        for fragment, (start, last) in grouped[title]:
            if   start < prev_last:
                text += fragment[prev_last-start:]
            elif start == prev_last:
                text += fragment
            else:
                text += ' [...] '
                text += fragment
            prev_last = last

        grouped[title] = text
                
    return grouped
        
def format_context(pipeline_state):
    """Print the state passed between Runnables in a langchain and pass it on"""

    context = ''
    documents = group_and_sort(pipeline_state["context"])
    for title, text in documents.items():
        context += f"\nTitle: {title}\n"
        context += text
        context += '\n\n---\n'

    pipeline_state["context"] = context
    return pipeline_state

def just_read(pipeline_state):
    fname = "docs.pickle"
    import pickle
    
    return pickle.load(open(fname, "rb"))

def new_state():
    return gr.State({
        "user": None,
        "system": None,
    })

def auth(token, state):
    tokens=os.environ.get("APP_TOKENS")
    if not tokens:
        state["user"] = "anonymous"
    else:
        tokens=json_loads(tokens)
        state["user"] = tokens.get(token, None)
    return "", state

AUTH_JS = """function auth_js(token, state) {
    if (!!document.location.hash) {
        token = document.location.hash
        document.location.hash=""
    }        
    return [token, state]
}
"""

def not_authenticated(state):
    answer = (state is None) or (not state['user'])
    if answer:
        gr.Warning("You need to authenticate first")
    return answer


def chat(message, history, state):
    if not_authenticated(state):
        yield "You need to authenticate first"
    elif AI:
        if not history:
            system_prompt = prompt_chain.invoke(message)
            system_prompt = system_prompt.messages[0]
            state["system"] = system_prompt
        else:
            system_prompt = state["system"]
            
        messages = [system_prompt]
        for human, ai in history:
            messages.append(HumanMessage(human))
            messages.append(AIMessage(ai))
        messages.append(HumanMessage(message))
        
        all = ''
        for response in llm.stream(messages):
            all += response.content
            yield all
    else:
        yield f"{time.ctime()}: You said: {message}"

def on_audio(path, state):
    if not_authenticated(state):
        return (gr.update(), None)
    else:
        if not path:
            return [gr.update(), None]
        if AI:
            text = oai_client.audio.transcriptions.create(
                    model="whisper-1", 
                    file=open(path, "rb"),
                    response_format="text"
                )
        else:
            text = f"{time.ctime()}: You said something"

        return (text, None)

def play_last(history, state):
    if not_authenticated(state):
        pass
    else:
        if len(history):
            voice_id = "IINmogebEQykLiDoSkd0"
            text = history[-1][1]
            lab11 = ElevenLabs()
            whatson=lab11.voices.get(voice_id)
            response = lab11.generate(text=text, voice=whatson, stream=True)
            yield from response
    
def gr_main():
    theme = gr.Theme.from_hub("freddyaboulton/[email protected]")
    theme.set(
        color_accent_soft="#818eb6",            # ChatBot.svelte / .message-row.panel.user-row
        background_fill_secondary="#6272a4",    # ChatBot.svelte / .message-row.panel.bot-row
        button_primary_text_color="*button_secondary_text_color",
        button_primary_background_fill="*button_secondary_background_fill")

    with gr.Blocks(
        title="Sherlock Holmes stories",
        fill_height=True,
        theme=theme
        ) as app:
            state = new_state()
            chatbot = gr.Chatbot(show_label=False, render=False, scale=1)
            iface = gr.ChatInterface(
                chat,
                chatbot=chatbot,
                title="Sherlock Holmes stories",
                submit_btn=gr.Button(
                                "Submit",
                                variant="primary",
                                scale=1,
                                min_width=150,
                                elem_id="submit_btn",
                                render=False
                            ),
                undo_btn=None,
                clear_btn=None,
                retry_btn=None, 
                # examples=[
                #     ["I arrived late last night and found a dead goose in my bed"],
                #     ["Help please sir. I'm about to get married, to the most lovely lady,"
                #     "and I just received a letter threatening me to make public some things"
                #     "of my past I'd rather keep quiet, unless I don't marry"],
                # ],
                additional_inputs=[state])
            
            with gr.Row():
                mic = gr.Audio(
                    sources=["microphone"],
                    type="filepath",
                    show_label=False,
                    format="mp3",
                    waveform_options=gr.WaveformOptions(sample_rate=16000))
                mic.change(
                    on_audio, [mic, state], [iface.textbox, mic]
                ).then(
                    lambda x:None,
                    js='function (text){if (text) document.getElementById("submit_btn").click(); return [text]}',
                    inputs=iface.textbox
                )
                
                player = gr.Audio(
                    show_label=False,
                    show_download_button=True,
                    visible=True,
                    autoplay=True,
                    streaming=True)
                
                play_btn = gr.Button("Play last ")
                play_btn.click(play_last, [chatbot, state], player)
                
            
            token = gr.Textbox(visible=False)
            app.load(auth,
                [token,state],
                [token,state],
                js=AUTH_JS)
            
    app.launch(show_api=False)
    
if __name__ == "__main__":
    ai_setup()
    gr_main()