File size: 11,673 Bytes
cf5e123 f053bac cf5e123 3d38722 db7f523 5ec174c db7f523 cf5e123 497bc21 cf5e123 db7f523 cf5e123 db7f523 cf5e123 f053bac cf5e123 0594bb7 f053bac db7f523 5ec174c cf5e123 5ec174c f053bac 551b27a f053bac 0594bb7 f053bac 551b27a 5ec174c 3491ea6 5ec174c 3491ea6 f053bac 0594bb7 f053bac 3491ea6 f053bac 3491ea6 5ec174c db7f523 f053bac c038d5b f053bac c038d5b f053bac c038d5b f053bac db7f523 ae6af5e 3491ea6 ae6af5e db7f523 ae6af5e db7f523 ae6af5e cf5e123 3d38722 db9a221 c038d5b db9a221 cf5e123 f053bac db7f523 cf5e123 db7f523 cf5e123 db7f523 497bc21 db7f523 7ec8702 5ec174c db7f523 3d38722 f053bac db9a221 f053bac db9a221 497bc21 c038d5b db9a221 c038d5b f053bac 497bc21 c038d5b db9a221 5ec174c db9a221 5ec174c db9a221 4313577 cf5e123 5ec174c cf5e123 db7f523 3d38722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import gradio as gr
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough, RunnableLambda
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
from langchain_astradb import AstraDBChatMessageHistory, AstraDBStore, AstraDBVectorStore
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from elevenlabs import VoiceSettings
from elevenlabs.client import ElevenLabs
from openai import OpenAI
from json import loads as json_loads
import time
import os
prompt_template = os.environ.get("PROMPT_TEMPLATE")
prompt = ChatPromptTemplate.from_messages([('system', prompt_template)])
AI = True
def ai_setup():
global llm, prompt_chain, oai_client
if AI:
oai_client = OpenAI()
llm = ChatOpenAI(model = "gpt-4o", temperature=0.8)
embedding = OpenAIEmbeddings()
vstore = AstraDBVectorStore(
embedding=embedding,
collection_name=os.environ.get("ASTRA_DB_COLLECTION"),
token=os.environ.get("ASTRA_DB_APPLICATION_TOKEN"),
api_endpoint=os.environ.get("ASTRA_DB_API_ENDPOINT"),
)
retriever = vstore.as_retriever(search_kwargs={'k': 10})
else:
retriever = RunnableLambda(just_read)
prompt_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| RunnableLambda(format_context)
| prompt
# | llm
# | StrOutputParser()
)
def group_and_sort(documents):
grouped = {}
for document in documents:
title = document.metadata["Title"]
docs = grouped.get(title, [])
grouped[title] = docs
docs.append((document.page_content, document.metadata["range"]))
for title, values in grouped.items():
values.sort(key=lambda doc:doc[1][0])
for title in grouped:
text = ''
prev_last = 0
for fragment, (start, last) in grouped[title]:
if start < prev_last:
text += fragment[prev_last-start:]
elif start == prev_last:
text += fragment
else:
text += ' [...] '
text += fragment
prev_last = last
grouped[title] = text
return grouped
def format_context(pipeline_state):
"""Print the state passed between Runnables in a langchain and pass it on"""
context = ''
documents = group_and_sort(pipeline_state["context"])
for title, text in documents.items():
context += f"\nTitle: {title}\n"
context += text
context += '\n\n---\n'
pipeline_state["context"] = context
return pipeline_state
def just_read(pipeline_state):
fname = "docs.pickle"
import pickle
return pickle.load(open(fname, "rb"))
def new_state():
return gr.State({
"user" : None,
"system" : None,
"history" : None,
})
def session_id(state: dict, request: gr.Request) -> str:
return f'{state["user"]}_{request.session_hash}'
store = None
def auth(token, state, request: gr.Request):
global store
tokens=os.environ.get("APP_TOKENS")
if not tokens:
state["user"] = "anonymous"
else:
tokens=json_loads(tokens)
state["user"] = tokens.get(token, None)
if state["user"]:
if store is None:
store = AstraDBStore(
collection_name=f'{os.environ.get("ASTRA_DB_COLLECTION")}_sessions',
token=os.environ.get("ASTRA_DB_APPLICATION_TOKEN"),
api_endpoint=os.environ.get("ASTRA_DB_API_ENDPOINT"),
)
user_session = session_id(state, request)
session_data = {
'user' : state["user"],
'session' : request.session_hash,
'timestamp' : time.asctime(time.gmtime())
}
store.mset([(user_session, session_data)])
return "", state
AUTH_JS = """function auth_js(token, state) {
if (!!document.location.hash) {
token = document.location.hash
document.location.hash=""
}
return [token, state]
}
"""
def not_authenticated(state):
answer = (state is None) or (not state['user'])
if answer:
gr.Warning("You need to authenticate first")
return answer
def add_history(state, request, type, message):
if not state["history"]:
session = session_id(state, request)
state["history"] = AstraDBChatMessageHistory(
session_id=session,
collection_name=f'{os.environ.get("ASTRA_DB_COLLECTION")}_chat_history',
token=os.environ.get("ASTRA_DB_APPLICATION_TOKEN"),
api_endpoint=os.environ.get("ASTRA_DB_API_ENDPOINT"),
)
history = state["history"]
if type == "system":
history.add_message(message)
elif type == "user":
history.add_user_message(message)
elif type == "ai":
history.add_ai_message(message)
def chat(message, history, state, request:gr.Request):
if not_authenticated(state):
yield "You need to authenticate first"
else:
if AI:
if not history:
system_prompt = prompt_chain.invoke(message)
system_prompt = system_prompt.messages[0]
state["system"] = system_prompt
# add_history(state, request, "system", system_prompt)
else:
system_prompt = state["system"]
add_history(state, request, "user", message)
messages = [system_prompt]
for human, ai in history:
messages.append(HumanMessage(human))
messages.append(AIMessage(ai))
messages.append(HumanMessage(message))
answer = ''
for response in llm.stream(messages):
answer += response.content
yield answer+'…'
else:
add_history(state, request, "user", message)
msg = f"{time.ctime()}: You said: {message}"
answer = ' '
for word in msg.split():
answer += f' {word}'
yield answer+'…'
time.sleep(0.05)
yield answer
add_history(state, request, "ai", answer)
def on_audio(path, state):
if not_authenticated(state):
return (gr.update(), None)
else:
if not path:
return [gr.update(), None]
if AI:
text = oai_client.audio.transcriptions.create(
model="whisper-1",
file=open(path, "rb"),
response_format="text"
)
else:
text = f"{time.ctime()}: You said something"
return (text, None)
def play_last(history, state):
if not_authenticated(state):
pass
else:
if len(history):
voice_id = "IINmogebEQykLiDoSkd0"
text = history[-1][1]
lab11 = ElevenLabs()
whatson=lab11.voices.get(voice_id)
response = lab11.generate(text=text, voice=whatson, stream=True)
yield from response
def chat_chage(history):
if history:
if not history[-1][1]:
return gr.update(interactive=False)
elif history[-1][1][-1] != '…':
return gr.update(interactive=True)
return gr.update()
TEXT_TALK = "🎤 Talk"
TEXT_STOP = "⏹ Stop"
def gr_main():
theme = gr.Theme.from_hub("freddyaboulton/[email protected]")
theme.set(
color_accent_soft="#818eb6", # ChatBot.svelte / .message-row.panel.user-row
background_fill_secondary="#6272a4", # ChatBot.svelte / .message-row.panel.bot-row
button_primary_text_color="*button_secondary_text_color",
button_primary_background_fill="*button_secondary_background_fill")
with gr.Blocks(
title="Sherlock Holmes stories",
fill_height=True,
theme=theme
) as app:
state = new_state()
# auto_play = gr.Checkbox(False, label="Autoplay", render=False)
chatbot = gr.Chatbot(show_label=False, render=False, scale=1)
iface = gr.ChatInterface(
chat,
chatbot=chatbot,
title="Sherlock Holmes stories",
submit_btn=gr.Button(
"Send",
variant="primary",
scale=1,
min_width=150,
elem_id="submit_btn",
render=False
),
undo_btn=None,
clear_btn=None,
retry_btn=None,
# examples=[
# ["I arrived late last night and found a dead goose in my bed"],
# ["Help please sir. I'm about to get married, to the most lovely lady,"
# "and I just received a letter threatening me to make public some things"
# "of my past I'd rather keep quiet, unless I don't marry"],
# ],
additional_inputs=[state])
with gr.Row():
player = gr.Audio(
visible=False,
show_label=False,
show_download_button=False,
show_share_button=False,
autoplay=True,
streaming=True,
interactive=False)
mic = gr.Audio(
sources=["microphone"],
type="filepath",
show_label=False,
format="mp3",
elem_id="microphone",
visible=False,
waveform_options=gr.WaveformOptions(sample_rate=16000, show_recording_waveform=False))
start_stop_rec = gr.Button(TEXT_TALK, size = "lg")
play_last_btn = gr.Button("🔊 Play last", size = "lg", interactive=False)
play_last_btn.click(
play_last,
[chatbot, state], player)
chatbot.change(chat_chage, inputs=chatbot, outputs=play_last_btn)
start_stop_rec.click(
lambda x:x,
inputs=start_stop_rec,
outputs=start_stop_rec,
js=f'''function (text) {{
if (text == "{TEXT_TALK}") {{
document.getElementById("microphone").querySelector(".record-button").click()
return ["{TEXT_STOP}"]
}} else {{
document.getElementById("microphone").querySelector(".stop-button").click()
return ["{TEXT_TALK}"]
}}
}}'''
)
mic.change(
on_audio, [mic, state], [iface.textbox, mic]
).then(
lambda x:None,
inputs=iface.textbox,
js='function (text){if (text) document.getElementById("submit_btn").click(); return [text]}'
)
token = gr.Textbox(visible=False)
app.load(auth,
[token,state],
[token,state],
js=AUTH_JS)
app.queue(default_concurrency_limit=None, api_open=False)
app.launch(show_api=False)
if __name__ == "__main__":
ai_setup()
gr_main()
|