File size: 15,975 Bytes
cf5e123 f053bac cf5e123 3d38722 db7f523 f5924e7 70798cd db7f523 cf5e123 497bc21 cf5e123 70798cd cf5e123 db7f523 cf5e123 db7f523 cf5e123 70798cd f5924e7 70798cd cf5e123 f5924e7 cf5e123 f5924e7 cf5e123 f053bac cf5e123 0594bb7 70798cd f053bac 70798cd db7f523 5ec174c cf5e123 5ec174c 70798cd 5ec174c 3491ea6 5ec174c 3491ea6 70798cd f053bac 70798cd f053bac 70798cd f053bac 3491ea6 5ec174c db7f523 f053bac f5924e7 f053bac 70798cd f5924e7 f053bac c038d5b f053bac c038d5b f053bac c038d5b f053bac db7f523 ae6af5e 3491ea6 ae6af5e db7f523 ae6af5e db7f523 ae6af5e cf5e123 3d38722 db9a221 70798cd c038d5b 70798cd c038d5b db9a221 39464f0 cf5e123 70798cd cf5e123 fc4c25e cf5e123 db7f523 70798cd db7f523 cf5e123 db7f523 70798cd db7f523 497bc21 db7f523 7ec8702 5ec174c db7f523 3d38722 f053bac db9a221 f053bac db9a221 497bc21 c038d5b db9a221 c038d5b f053bac 497bc21 70798cd db9a221 70798cd db9a221 5ec174c db9a221 5ec174c db9a221 4313577 70798cd 5ec174c cf5e123 39464f0 70798cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
import gradio as gr
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough, RunnableLambda
from langchain_core.messages import SystemMessage, AIMessage, HumanMessage
from langchain_astradb import AstraDBChatMessageHistory, AstraDBStore, AstraDBVectorStore
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from elevenlabs import VoiceSettings
from elevenlabs.client import ElevenLabs
from openai import OpenAI
from json import loads as json_loads, dumps as json_dumps
import itertools
import time
import os
AI = True
if not hasattr(itertools, "batched"):
def batched(iterable, n):
"Batch data into lists of length n. The last batch may be shorter."
# batched('ABCDEFG', 3) --> ABC DEF G
it = iter(iterable)
while True:
batch = list(itertools.islice(it, n))
if not batch:
return
yield batch
itertools.batched = batched
def ai_setup():
global llm, prompt_chain, oai_client
if AI:
oai_client = OpenAI()
llm = ChatOpenAI(model = "gpt-4o", temperature=0.8)
embedding = OpenAIEmbeddings()
vstore = AstraDBVectorStore(
embedding=embedding,
collection_name=os.environ.get("ASTRA_DB_COLLECTION"),
token=os.environ.get("ASTRA_DB_APPLICATION_TOKEN"),
api_endpoint=os.environ.get("ASTRA_DB_API_ENDPOINT"),
)
retriever = vstore.as_retriever(search_kwargs={'k': 10})
prompt_template = os.environ.get("PROMPT_TEMPLATE")
prompt = ChatPromptTemplate.from_messages([
('system', "{doc_ids}"),
('system', prompt_template)])
prompt_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| RunnableLambda(format_context)
| prompt
# | llm
# | StrOutputParser()
)
else:
retriever = RunnableLambda(just_read)
def group_and_sort(documents):
grouped = {}
for document in documents:
title = document.metadata["Title"]
docs = grouped.get(title, [])
grouped[title] = docs
docs.append((document.page_content, document.metadata["range"]))
for title, values in grouped.items():
values.sort(key=lambda doc:doc[1][0])
for title in grouped:
text = ''
prev_last = 0
for fragment, (start, last) in grouped[title]:
if start < prev_last:
text += fragment[prev_last-start:]
elif start == prev_last:
text += fragment
else:
text += ' [...] '
text += fragment
prev_last = last
grouped[title] = text
return grouped
def format_context(pipeline_state):
"""Print the state passed between Runnables in a langchain and pass it on"""
context = ''
documents = group_and_sort(pipeline_state["context"])
for title, text in documents.items():
context += f"\nTitle: {title}\n"
context += text
context += '\n\n---\n'
doc_ids = [1,2,3,4,5]
pipeline_state["context"] = context
pipeline_state["doc_ids"] = json_dumps(doc_ids)
return pipeline_state
def just_read(pipeline_state):
fname = "docs.pickle"
import pickle
return pickle.load(open(fname, "rb"))
def new_state():
return gr.State({
"user" : None,
"system" : None,
"history" : None,
})
def session_id(state: dict, request: gr.Request) -> str:
return f'{state["user"]}_{request.session_hash}'
class History:
store = None
def __init__(self, name:str, user:str, session_id:str, id:str = None):
self.session_id = session_id
self.name = name
self.user = user
self.astra_history = None
if id:
self.id = id
else:
self.id = f"{user}_{session_id}"
self.create()
@classmethod
def get_store(self):
if self.store is None:
self.store = AstraDBStore(
collection_name=f'{os.environ.get("ASTRA_DB_COLLECTION")}_sessions',
token=os.environ.get("ASTRA_DB_APPLICATION_TOKEN"),
api_endpoint=os.environ.get("ASTRA_DB_API_ENDPOINT"),
)
return self.store
@classmethod
def from_dict(cls, id:str, data:dict):
name = f":{id}"
name = data.get("name", name)
answer = cls(name, user=data["user"], id = id, session_id=data["session"])
return answer
@classmethod
def get_histories(cls, user:str):
store = cls.get_store()
histories = []
keys = [k for k in store.yield_keys(prefix=f"{user}_")]
for id, history in zip(keys, store.mget(keys)):
history = cls.from_dict(id = id, data = history)
histories.append(history)
return histories
@classmethod
def load(cls, id:str):
data = cls.get_store().mget([id])
return cls.from_dict(id, data[0])
def __str__(self):
return f"{self.id}:{self.name}"
def create(self):
history = {
'session' : self.session_id,
'user' : self.user,
'timestamp' : time.asctime(time.gmtime()),
'name' : self.name
}
self.get_store().mset([(self.id, history)])
@staticmethod
def get_history_collection_name():
return f'{os.environ.get("ASTRA_DB_COLLECTION")}_chat_history'
def get_astra_history(self):
if self.astra_history is None:
self.astra_history = AstraDBChatMessageHistory(
session_id=self.id,
collection_name=self.get_history_collection_name(),
token=os.environ.get("ASTRA_DB_APPLICATION_TOKEN"),
api_endpoint=os.environ.get("ASTRA_DB_API_ENDPOINT"),
)
return self.astra_history
def add(self, type:str, message):
if type == "system":
self.get_astra_history().add_message(message)
elif type == "user":
self.get_astra_history().add_user_message(message)
elif type == "ai":
self.get_astra_history().add_ai_message(message)
def messages(self):
return self.get_astra_history().messages
def clear(self):
self.get_astra_history().clear()
def delete(self):
self.clear()
self.get_store().mdelete([self.id])
def auth(token, state, request: gr.Request):
tokens=os.environ.get("APP_TOKENS")
if not tokens:
state["user"] = "anonymous"
else:
tokens=json_loads(tokens)
state["user"] = tokens.get(token, None)
return "", state
AUTH_JS = """function auth_js(token, state) {
if (!!document.location.hash) {
token = document.location.hash
document.location.hash=""
}
return [token, state]
}
"""
def not_authenticated(state):
answer = (state is None) or (not state['user'])
if answer:
gr.Warning("You need to authenticate first")
return answer
def list_histories(state):
if not_authenticated(state):
return gr.update()
histories = History.get_histories(state["user"])
answer = [(h.name, h.id) for h in histories]
return gr.update(choices=answer, value=None)
def add_history(state, request, type, message, name:str = None):
if not state["history"]:
name = name or message[:60]
state["history"] = History(
name = name,
user = state["user"],
session_id = request.session_hash
)
state["history"].add(type, message)
def load_history(state, history_id):
state["history"] = History.load(history_id)
history = [m.content for m in state["history"].messages()]
history = itertools.batched(history, 2)
history = [m for m in history]
if len(history) and len(history[-1]) == 1:
user_input = history[-1][0]
history = history[:-1]
else:
user_input = ''
return state, history, history, user_input # state, Chatbot, ChatInterface.state, ChatInterface.textbox
def chat(message, history, state, request:gr.Request):
if not_authenticated(state):
yield "You need to authenticate first"
else:
if AI:
if not history:
system_prompts = prompt_chain.invoke(message)
system_prompt = system_prompts.messages[1]
state["system"] = system_prompt
# Next is commented out because astra has a limit on document size
doc_ids = system_prompts.messages[0].content
add_history(state, request, "system", doc_ids, name=message)
else:
system_prompt = state["system"]
add_history(state, request, "user", message)
messages = [system_prompt]
for human, ai in history:
messages.append(HumanMessage(human))
messages.append(AIMessage(ai))
messages.append(HumanMessage(message))
answer = ''
for response in llm.stream(messages):
answer += response.content
yield answer+'…'
else:
add_history(state, request, "user", message)
msg = f"{time.ctime()}: You said: {message}"
answer = ' '
for word in msg.split():
answer += f' {word}'
yield answer+'…'
time.sleep(0.05)
yield answer
add_history(state, request, "ai", answer)
def on_audio(path, state):
if not_authenticated(state):
return (gr.update(), None)
else:
if not path:
return [gr.update(), None]
if AI:
text = oai_client.audio.transcriptions.create(
model="whisper-1",
file=open(path, "rb"),
response_format="text"
)
else:
text = f"{time.ctime()}: You said something"
return (text, None)
def play_last(history, state):
if not_authenticated(state):
pass
else:
if len(history):
voice_id = "IINmogebEQykLiDoSkd0"
text = history[-1][1]
lab11 = ElevenLabs()
whatson=lab11.voices.get(voice_id)
response = lab11.generate(text=text, voice=whatson, stream=True)
yield from response
def chat_change(history):
if history:
if not history[-1][1]:
return gr.update(interactive=False)
elif history[-1][1][-1] != '…':
return gr.update(interactive=True)
return gr.update() # play_last_btn
TEXT_TALK = "🎤 Talk"
TEXT_STOP = "⏹ Stop"
def gr_setup():
theme = gr.Theme.from_hub("freddyaboulton/[email protected]")
theme.set(
color_accent_soft="#818eb6", # ChatBot.svelte / .user / .message-row.panel.user-row . neutral_500 -> neutral_200
background_fill_secondary="#6272a4", # ChatBot.svelte / .bot / .message-row.panel.bot-row . neutral_500 -> neutral_400
background_fill_primary="#818eb6", # DropdownOptions.svelte / item
button_primary_text_color="*button_secondary_text_color",
button_primary_background_fill="*button_secondary_background_fill")
with gr.Blocks(
title="Sherlock Holmes stories",
fill_height=True,
theme=theme,
css="footer {visibility: hidden}"
) as app:
state = new_state()
chatbot = gr.Chatbot(show_label=False, render=False, scale=1)
gr.HTML('<h1 style="text-align: center">Sherlock Holmes stories</h1>')
history_choice = gr.Dropdown(
choices=[("History", "History")],
value="History",
show_label=False,
container=False,
interactive=True,
filterable=True)
iface = gr.ChatInterface(
chat,
chatbot=chatbot,
title=None,
submit_btn=gr.Button(
"Send",
variant="primary",
scale=1,
min_width=150,
elem_id="submit_btn",
render=False
),
undo_btn=None,
clear_btn=None,
retry_btn=None,
# examples=[
# ["I arrived late last night and found a dead goose in my bed"],
# ["Help please sir. I'm about to get married, to the most lovely lady,"
# "and I just received a letter threatening me to make public some things"
# "of my past I'd rather keep quiet, unless I don't marry"],
# ],
additional_inputs=[state])
with gr.Row():
player = gr.Audio(
visible=False,
show_label=False,
show_download_button=False,
show_share_button=False,
autoplay=True,
streaming=True,
interactive=False)
mic = gr.Audio(
sources=["microphone"],
type="filepath",
show_label=False,
format="mp3",
elem_id="microphone",
visible=False,
waveform_options=gr.WaveformOptions(sample_rate=16000, show_recording_waveform=False))
start_stop_rec = gr.Button(TEXT_TALK, size = "lg")
play_last_btn = gr.Button("🔊 Play last", size = "lg", interactive=False)
play_last_btn.click(
play_last,
[chatbot, state], player)
chatbot.change(chat_change, inputs=chatbot, outputs=play_last_btn)
start_stop_rec.click(
lambda x:x,
inputs=start_stop_rec,
outputs=start_stop_rec,
js=f'''function (text) {{
if (text == "{TEXT_TALK}") {{
document.getElementById("microphone").querySelector(".record-button").click()
return ["{TEXT_STOP}"]
}} else {{
document.getElementById("microphone").querySelector(".stop-button").click()
return ["{TEXT_TALK}"]
}}
}}'''
)
mic.change(
on_audio, [mic, state], [iface.textbox, mic]
).then(
lambda x:None,
inputs=iface.textbox,
js='function (text){if (text) document.getElementById("submit_btn").click(); return [text]}'
)
history_choice.focus(
list_histories,
inputs=state,
outputs=history_choice
)
history_choice.input(
load_history,
inputs=[state, history_choice],
outputs=[state, chatbot, iface.chatbot_state, iface.textbox])
token = gr.Textbox(visible=False)
app.load(auth,
[token,state],
[token,state],
js=AUTH_JS)
app.queue(default_concurrency_limit=None, api_open=False)
return app
if __name__ == "__main__":
ai_setup()
app = gr_setup()
app.launch(show_api=False)
|