|
from . import base |
|
from . import functional as F |
|
from ..base.modules import Activation |
|
|
|
|
|
class IoU(base.Metric): |
|
__name__ = "iou_score" |
|
|
|
def __init__( |
|
self, eps=1e-7, threshold=0.5, activation=None, ignore_channels=None, **kwargs |
|
): |
|
super().__init__(**kwargs) |
|
self.eps = eps |
|
self.threshold = threshold |
|
self.activation = Activation(activation) |
|
self.ignore_channels = ignore_channels |
|
|
|
def forward(self, y_pr, y_gt): |
|
y_pr = self.activation(y_pr) |
|
return F.iou( |
|
y_pr, |
|
y_gt, |
|
eps=self.eps, |
|
threshold=self.threshold, |
|
ignore_channels=self.ignore_channels, |
|
) |
|
|
|
|
|
class Fscore(base.Metric): |
|
def __init__( |
|
self, |
|
beta=1, |
|
eps=1e-7, |
|
threshold=0.5, |
|
activation=None, |
|
ignore_channels=None, |
|
**kwargs |
|
): |
|
super().__init__(**kwargs) |
|
self.eps = eps |
|
self.beta = beta |
|
self.threshold = threshold |
|
self.activation = Activation(activation) |
|
self.ignore_channels = ignore_channels |
|
|
|
def forward(self, y_pr, y_gt): |
|
y_pr = self.activation(y_pr) |
|
return F.f_score( |
|
y_pr, |
|
y_gt, |
|
eps=self.eps, |
|
beta=self.beta, |
|
threshold=self.threshold, |
|
ignore_channels=self.ignore_channels, |
|
) |
|
|
|
|
|
class Accuracy(base.Metric): |
|
def __init__(self, threshold=0.5, activation=None, ignore_channels=None, **kwargs): |
|
super().__init__(**kwargs) |
|
self.threshold = threshold |
|
self.activation = Activation(activation) |
|
self.ignore_channels = ignore_channels |
|
|
|
def forward(self, y_pr, y_gt): |
|
y_pr = self.activation(y_pr) |
|
return F.accuracy( |
|
y_pr, y_gt, threshold=self.threshold, ignore_channels=self.ignore_channels, |
|
) |
|
|
|
|
|
class Recall(base.Metric): |
|
def __init__( |
|
self, eps=1e-7, threshold=0.5, activation=None, ignore_channels=None, **kwargs |
|
): |
|
super().__init__(**kwargs) |
|
self.eps = eps |
|
self.threshold = threshold |
|
self.activation = Activation(activation) |
|
self.ignore_channels = ignore_channels |
|
|
|
def forward(self, y_pr, y_gt): |
|
y_pr = self.activation(y_pr) |
|
return F.recall( |
|
y_pr, |
|
y_gt, |
|
eps=self.eps, |
|
threshold=self.threshold, |
|
ignore_channels=self.ignore_channels, |
|
) |
|
|
|
|
|
class Precision(base.Metric): |
|
def __init__( |
|
self, eps=1e-7, threshold=0.5, activation=None, ignore_channels=None, **kwargs |
|
): |
|
super().__init__(**kwargs) |
|
self.eps = eps |
|
self.threshold = threshold |
|
self.activation = Activation(activation) |
|
self.ignore_channels = ignore_channels |
|
|
|
def forward(self, y_pr, y_gt): |
|
y_pr = self.activation(y_pr) |
|
return F.precision( |
|
y_pr, |
|
y_gt, |
|
eps=self.eps, |
|
threshold=self.threshold, |
|
ignore_channels=self.ignore_channels, |
|
) |
|
|