ghlee94's picture
Init
2a13495
from . import base
from . import functional as F
from ..base.modules import Activation
class IoU(base.Metric):
__name__ = "iou_score"
def __init__(
self, eps=1e-7, threshold=0.5, activation=None, ignore_channels=None, **kwargs
):
super().__init__(**kwargs)
self.eps = eps
self.threshold = threshold
self.activation = Activation(activation)
self.ignore_channels = ignore_channels
def forward(self, y_pr, y_gt):
y_pr = self.activation(y_pr)
return F.iou(
y_pr,
y_gt,
eps=self.eps,
threshold=self.threshold,
ignore_channels=self.ignore_channels,
)
class Fscore(base.Metric):
def __init__(
self,
beta=1,
eps=1e-7,
threshold=0.5,
activation=None,
ignore_channels=None,
**kwargs
):
super().__init__(**kwargs)
self.eps = eps
self.beta = beta
self.threshold = threshold
self.activation = Activation(activation)
self.ignore_channels = ignore_channels
def forward(self, y_pr, y_gt):
y_pr = self.activation(y_pr)
return F.f_score(
y_pr,
y_gt,
eps=self.eps,
beta=self.beta,
threshold=self.threshold,
ignore_channels=self.ignore_channels,
)
class Accuracy(base.Metric):
def __init__(self, threshold=0.5, activation=None, ignore_channels=None, **kwargs):
super().__init__(**kwargs)
self.threshold = threshold
self.activation = Activation(activation)
self.ignore_channels = ignore_channels
def forward(self, y_pr, y_gt):
y_pr = self.activation(y_pr)
return F.accuracy(
y_pr, y_gt, threshold=self.threshold, ignore_channels=self.ignore_channels,
)
class Recall(base.Metric):
def __init__(
self, eps=1e-7, threshold=0.5, activation=None, ignore_channels=None, **kwargs
):
super().__init__(**kwargs)
self.eps = eps
self.threshold = threshold
self.activation = Activation(activation)
self.ignore_channels = ignore_channels
def forward(self, y_pr, y_gt):
y_pr = self.activation(y_pr)
return F.recall(
y_pr,
y_gt,
eps=self.eps,
threshold=self.threshold,
ignore_channels=self.ignore_channels,
)
class Precision(base.Metric):
def __init__(
self, eps=1e-7, threshold=0.5, activation=None, ignore_channels=None, **kwargs
):
super().__init__(**kwargs)
self.eps = eps
self.threshold = threshold
self.activation = Activation(activation)
self.ignore_channels = ignore_channels
def forward(self, y_pr, y_gt):
y_pr = self.activation(y_pr)
return F.precision(
y_pr,
y_gt,
eps=self.eps,
threshold=self.threshold,
ignore_channels=self.ignore_channels,
)