Spaces:
Runtime error
Runtime error
File size: 3,738 Bytes
81b1a0e eeef7f4 6284dc0 ab98f09 6284dc0 e797135 6be00d8 e797135 81b1a0e 53ff575 81b1a0e 621c740 81b1a0e 0972107 81b1a0e 1592dab 81b1a0e 6284dc0 81b1a0e eeef7f4 d967d62 eeef7f4 8da09d2 0972107 fbe03e2 cb61e6f a0c2c56 eeef7f4 0972107 cb61e6f 0972107 1acca69 0972107 741bf59 ab98f09 0972107 a0c2c56 eeef7f4 ab98f09 1acca69 0972107 eeef7f4 8da09d2 0972107 ea720f8 eeef7f4 ea720f8 3304489 ea720f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import os
import cv2
import numpy as np
import torch
import gradio as gr
import spaces # Added import for spaces
from PIL import Image, ImageOps
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
torch.set_float32_matmul_precision('high')
torch.jit.script = lambda f: f
device = "cuda" if torch.cuda.is_available() else "cpu"
def refine_foreground(image, mask, r=90):
if mask.size != image.size:
mask = mask.resize(image.size)
image = np.array(image) / 255.0
mask = np.array(mask) / 255.0
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
return image_masked
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
alpha = alpha[:, :, None]
F, blur_B = FB_blur_fusion_foreground_estimator(
image, image, image, alpha, r)
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
if isinstance(image, Image.Image):
image = np.array(image) / 255.0
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
blurred_FA = cv2.blur(F * alpha, (r, r))
blurred_F = blurred_FA / (blurred_alpha + 1e-5)
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
F = blurred_F + alpha * \
(image - alpha * blurred_F - (1 - alpha) * blurred_B)
F = np.clip(F, 0, 1)
return F, blurred_B
class ImagePreprocessor():
def __init__(self, resolution=(1024, 1024)) -> None:
self.transform_image = transforms.Compose([
transforms.Resize(resolution),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def proc(self, image: Image.Image) -> torch.Tensor:
image = self.transform_image(image)
return image
birefnet = AutoModelForImageSegmentation.from_pretrained(
'zhengpeng7/BiRefNet-matting', trust_remote_code=True)
birefnet.to(device)
birefnet.eval()
@spaces.GPU # Added the @spaces.GPU decorator
def remove_background(image):
if image is None:
raise gr.Error("Please upload an image.")
image_ori = Image.fromarray(image).convert('RGB')
original_size = image_ori.size
# Preprocess the image
image_preprocessor = ImagePreprocessor(resolution=(1024, 1024))
image_proc = image_preprocessor.proc(image_ori)
image_proc = image_proc.unsqueeze(0)
# Prediction
with torch.no_grad():
preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu()
pred = preds[0].squeeze()
# Process Results
pred_pil = transforms.ToPILImage()(pred)
pred_pil = pred_pil.resize(original_size, Image.BICUBIC) # Resize mask to original size
# Create reverse mask (background mask)
reverse_mask = ImageOps.invert(pred_pil)
# Create foreground image (object with transparent background)
foreground = image_ori.copy()
foreground.putalpha(pred_pil)
# Create background image
background = image_ori.copy()
background.putalpha(reverse_mask)
torch.cuda.empty_cache()
# Return images in the specified order
return foreground, background, pred_pil, reverse_mask
iface = gr.Interface(
fn=remove_background,
inputs=gr.Image(type="numpy"),
outputs=[
gr.Image(type="pil", label="Foreground"),
gr.Image(type="pil", label="Background"),
gr.Image(type="pil", label="Foreground Mask"),
gr.Image(type="pil", label="Background Mask")
],
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch(debug=True) |