File size: 3,738 Bytes
81b1a0e
 
 
 
 
eeef7f4
6284dc0
ab98f09
6284dc0
 
e797135
6be00d8
e797135
81b1a0e
53ff575
81b1a0e
621c740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81b1a0e
0972107
81b1a0e
1592dab
81b1a0e
 
 
 
6284dc0
81b1a0e
 
 
eeef7f4
 
d967d62
 
 
eeef7f4
8da09d2
0972107
 
fbe03e2
cb61e6f
a0c2c56
eeef7f4
0972107
 
cb61e6f
0972107
1acca69
0972107
 
 
 
741bf59
ab98f09
0972107
a0c2c56
eeef7f4
 
 
ab98f09
 
 
 
 
 
 
 
1acca69
0972107
 
eeef7f4
 
8da09d2
0972107
ea720f8
 
 
eeef7f4
 
 
 
ea720f8
3304489
ea720f8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os
import cv2
import numpy as np
import torch
import gradio as gr
import spaces  # Added import for spaces

from PIL import Image, ImageOps
from transformers import AutoModelForImageSegmentation
from torchvision import transforms

torch.set_float32_matmul_precision('high')
torch.jit.script = lambda f: f

device = "cuda" if torch.cuda.is_available() else "cpu"

def refine_foreground(image, mask, r=90):
    if mask.size != image.size:
        mask = mask.resize(image.size)
    image = np.array(image) / 255.0
    mask = np.array(mask) / 255.0
    estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
    image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
    return image_masked

def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
    alpha = alpha[:, :, None]
    F, blur_B = FB_blur_fusion_foreground_estimator(
        image, image, image, alpha, r)
    return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]

def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
    if isinstance(image, Image.Image):
        image = np.array(image) / 255.0
    blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]

    blurred_FA = cv2.blur(F * alpha, (r, r))
    blurred_F = blurred_FA / (blurred_alpha + 1e-5)

    blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
    blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
    F = blurred_F + alpha * \
        (image - alpha * blurred_F - (1 - alpha) * blurred_B)
    F = np.clip(F, 0, 1)
    return F, blurred_B

class ImagePreprocessor():
    def __init__(self, resolution=(1024, 1024)) -> None:
        self.transform_image = transforms.Compose([
            transforms.Resize(resolution),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ])

    def proc(self, image: Image.Image) -> torch.Tensor:
        image = self.transform_image(image)
        return image

birefnet = AutoModelForImageSegmentation.from_pretrained(
    'zhengpeng7/BiRefNet-matting', trust_remote_code=True)
birefnet.to(device)
birefnet.eval()

@spaces.GPU  # Added the @spaces.GPU decorator
def remove_background(image):
    if image is None:
        raise gr.Error("Please upload an image.")

    image_ori = Image.fromarray(image).convert('RGB')
    original_size = image_ori.size

    # Preprocess the image
    image_preprocessor = ImagePreprocessor(resolution=(1024, 1024))
    image_proc = image_preprocessor.proc(image_ori)
    image_proc = image_proc.unsqueeze(0)

    # Prediction
    with torch.no_grad():
        preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu()
    pred = preds[0].squeeze()

    # Process Results
    pred_pil = transforms.ToPILImage()(pred)
    pred_pil = pred_pil.resize(original_size, Image.BICUBIC)  # Resize mask to original size

    # Create reverse mask (background mask)
    reverse_mask = ImageOps.invert(pred_pil)

    # Create foreground image (object with transparent background)
    foreground = image_ori.copy()
    foreground.putalpha(pred_pil)

    # Create background image
    background = image_ori.copy()
    background.putalpha(reverse_mask)

    torch.cuda.empty_cache()

    # Return images in the specified order
    return foreground, background, pred_pil, reverse_mask

iface = gr.Interface(
    fn=remove_background,
    inputs=gr.Image(type="numpy"),
    outputs=[
        gr.Image(type="pil", label="Foreground"),
        gr.Image(type="pil", label="Background"),
        gr.Image(type="pil", label="Foreground Mask"),
        gr.Image(type="pil", label="Background Mask")
    ],
    allow_flagging="never"
)

if __name__ == "__main__":
    iface.launch(debug=True)