Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import numpy as np | |
import torch | |
import gradio as gr | |
import spaces | |
from gradio.themes.base import Base | |
from gradio.themes.utils import colors, fonts, sizes | |
from PIL import Image, ImageOps | |
from transformers import AutoModelForImageSegmentation | |
from torchvision import transforms | |
class WhiteTheme(Base): | |
def __init__( | |
self, | |
*, | |
primary_hue: colors.Color | str = colors.orange, | |
font: fonts.Font | str | tuple[fonts.Font | str, ...] = ( | |
fonts.GoogleFont("Inter"), | |
"ui-sans-serif", | |
"system-ui", | |
"sans-serif", | |
), | |
font_mono: fonts.Font | str | tuple[fonts.Font | str, ...] = ( | |
fonts.GoogleFont("Inter"), | |
"ui-monospace", | |
"system-ui", | |
"monospace", | |
) | |
): | |
super().__init__( | |
primary_hue=primary_hue, | |
font=font, | |
font_mono=font_mono, | |
) | |
self.set( | |
# Light mode specific colors | |
background_fill_primary="*primary_50", | |
background_fill_secondary="white", | |
border_color_primary="*primary_300", | |
# General colors that should stay constant | |
body_background_fill="white", | |
body_background_fill_dark="white", | |
block_background_fill="white", | |
block_background_fill_dark="white", | |
panel_background_fill="white", | |
panel_background_fill_dark="white", | |
body_text_color="black", | |
body_text_color_dark="black", | |
block_label_text_color="black", | |
block_label_text_color_dark="black", | |
block_border_color="white", | |
panel_border_color="white", | |
input_border_color="lightgray", | |
input_background_fill="white", | |
input_background_fill_dark="white", | |
shadow_drop="none" | |
) | |
torch.set_float32_matmul_precision('high') | |
torch.jit.script = lambda f: f | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
def refine_foreground(image, mask, r=90): | |
if mask.size != image.size: | |
mask = mask.resize(image.size) | |
image = np.array(image) / 255.0 | |
mask = np.array(mask) / 255.0 | |
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r) | |
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8)) | |
return image_masked | |
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90): | |
alpha = alpha[:, :, None] | |
F, blur_B = FB_blur_fusion_foreground_estimator( | |
image, image, image, alpha, r) | |
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0] | |
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90): | |
if isinstance(image, Image.Image): | |
image = np.array(image) / 255.0 | |
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None] | |
blurred_FA = cv2.blur(F * alpha, (r, r)) | |
blurred_F = blurred_FA / (blurred_alpha + 1e-5) | |
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r)) | |
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5) | |
F = blurred_F + alpha * (image - alpha * blurred_F - (1 - alpha) * blurred_B) | |
F = np.clip(F, 0, 1) | |
return F, blurred_B | |
class ImagePreprocessor(): | |
def __init__(self, resolution=(1024, 1024)) -> None: | |
self.transform_image = transforms.Compose([ | |
transforms.Resize(resolution), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], | |
[0.229, 0.224, 0.225]), | |
]) | |
def proc(self, image: Image.Image) -> torch.Tensor: | |
image = self.transform_image(image) | |
return image | |
# Load the model | |
birefnet = AutoModelForImageSegmentation.from_pretrained( | |
'zhengpeng7/BiRefNet-matting', trust_remote_code=True) | |
birefnet.to(device) | |
birefnet.eval() | |
def remove_background_wrapper(image): | |
if image is None: | |
raise gr.Error("Please upload an image.") | |
image_ori = Image.fromarray(image).convert('RGB') | |
foreground, background, pred_pil, reverse_mask = remove_background(image_ori) | |
return foreground, background, pred_pil, reverse_mask | |
def remove_background(image_ori): | |
original_size = image_ori.size | |
image_preprocessor = ImagePreprocessor(resolution=(1024, 1024)) | |
image_proc = image_preprocessor.proc(image_ori) | |
image_proc = image_proc.unsqueeze(0) | |
with torch.no_grad(): | |
preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
pred_pil = pred_pil.resize(original_size, Image.BICUBIC) | |
reverse_mask = ImageOps.invert(pred_pil) | |
foreground = image_ori.copy() | |
foreground.putalpha(pred_pil) | |
background = image_ori.copy() | |
background.putalpha(reverse_mask) | |
torch.cuda.empty_cache() | |
return foreground, background, pred_pil, reverse_mask | |
# Custom CSS for styling | |
custom_css = """ | |
.title-container { | |
text-align: center; | |
padding: 10px 0; | |
} | |
#title { | |
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif; | |
font-size: 36px; | |
font-weight: bold; | |
color: #000000; | |
padding: 10px; | |
border-radius: 10px; | |
display: inline-block; | |
background: linear-gradient( | |
135deg, | |
#e0f7fa, #e8f5e9, #fff9c4, #ffebee, | |
#f3e5f5, #e1f5fe, #fff3e0, #e8eaf6 | |
); | |
background-size: 400% 400%; | |
animation: gradient-animation 15s ease infinite; | |
} | |
@keyframes gradient-animation { | |
0% { background-position: 0% 50%; } | |
50% { background-position: 100% 50%; } | |
100% { background-position: 0% 50%; } | |
} | |
#submit-button { | |
background: linear-gradient( | |
135deg, | |
#e0f7fa, #e8f5e9, #fff9c4, #ffebee, | |
#f3e5f5, #e1f5fe, #fff3e0, #e8eaf6 | |
); | |
background-size: 400% 400%; | |
animation: gradient-animation 15s ease infinite; | |
border-radius: 12px; | |
color: black; | |
} | |
/* Force light mode styles */ | |
:root, :root[data-theme='light'], :root[data-theme='dark'] { | |
--body-background-fill: white !important; | |
--background-fill-primary: white !important; | |
--background-fill-secondary: white !important; | |
--block-background-fill: white !important; | |
--panel-background-fill: white !important; | |
--body-text-color: black !important; | |
--block-label-text-color: black !important; | |
} | |
/* Additional overrides for dark mode */ | |
@media (prefers-color-scheme: dark) { | |
:root { | |
color-scheme: light; | |
} | |
} | |
""" | |
with gr.Blocks(css=custom_css, theme=WhiteTheme()) as demo: | |
gr.HTML(''' | |
<div class="title-container"> | |
<div id="title"> | |
<span>{.</span><span id="typed-text"></span><span>}</span> | |
</div> | |
</div> | |
<script> | |
(function() { | |
const text = "image"; | |
const typedTextSpan = document.getElementById("typed-text"); | |
let charIndex = 0; | |
function type() { | |
if (charIndex < text.length) { | |
typedTextSpan.textContent += text[charIndex]; | |
charIndex++; | |
setTimeout(type, 150); | |
} | |
} | |
setTimeout(type, 150); | |
})(); | |
</script> | |
''') | |
# Interface setup with input and output | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="numpy", sources=['upload'], label="Upload Image") | |
btn = gr.Button("Process Image", elem_id="submit-button") | |
with gr.Column(): | |
output_foreground = gr.Image(type="pil", label="Foreground") | |
output_background = gr.Image(type="pil", label="Background") | |
output_foreground_mask = gr.Image(type="pil", label="Foreground Mask") | |
output_background_mask = gr.Image(type="pil", label="Background Mask") | |
# Link the button to the processing function | |
btn.click(fn=remove_background_wrapper, inputs=image_input, outputs=[ | |
output_foreground, output_background, output_foreground_mask, output_background_mask]) | |
demo.launch(debug=True) |