Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import numpy as np | |
import torch | |
import gradio as gr | |
import spaces # Required for @spaces.GPU | |
from PIL import Image, ImageOps | |
from transformers import AutoModelForImageSegmentation | |
from torchvision import transforms | |
torch.set_float32_matmul_precision('high') | |
torch.jit.script = lambda f: f | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
def refine_foreground(image, mask, r=90): | |
if mask.size != image.size: | |
mask = mask.resize(image.size) | |
image = np.array(image) / 255.0 | |
mask = np.array(mask) / 255.0 | |
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r) | |
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8)) | |
return image_masked | |
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90): | |
alpha = alpha[:, :, None] | |
F, blur_B = FB_blur_fusion_foreground_estimator( | |
image, image, image, alpha, r) | |
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0] | |
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90): | |
if isinstance(image, Image.Image): | |
image = np.array(image) / 255.0 | |
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None] | |
blurred_FA = cv2.blur(F * alpha, (r, r)) | |
blurred_F = blurred_FA / (blurred_alpha + 1e-5) | |
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r)) | |
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5) | |
F = blurred_F + alpha * \ | |
(image - alpha * blurred_F - (1 - alpha) * blurred_B) | |
F = np.clip(F, 0, 1) | |
return F, blurred_B | |
class ImagePreprocessor(): | |
def __init__(self, resolution=(1024, 1024)) -> None: | |
self.transform_image = transforms.Compose([ | |
transforms.Resize(resolution), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], | |
[0.229, 0.224, 0.225]), | |
]) | |
def proc(self, image: Image.Image) -> torch.Tensor: | |
image = self.transform_image(image) | |
return image | |
# Load the model | |
birefnet = AutoModelForImageSegmentation.from_pretrained( | |
'zhengpeng7/BiRefNet-matting', trust_remote_code=True) | |
birefnet.to(device) | |
birefnet.eval() | |
def remove_background_wrapper(image): | |
if image is None: | |
raise gr.Error("Please upload an image.") | |
image_ori = Image.fromarray(image).convert('RGB') | |
# Call the processing function | |
foreground, background, pred_pil, reverse_mask = remove_background(image_ori) | |
return foreground, background, pred_pil, reverse_mask | |
# Decorate the processing function | |
def remove_background(image_ori): | |
original_size = image_ori.size | |
# Preprocess the image | |
image_preprocessor = ImagePreprocessor(resolution=(1024, 1024)) | |
image_proc = image_preprocessor.proc(image_ori) | |
image_proc = image_proc.unsqueeze(0) | |
# Prediction | |
with torch.no_grad(): | |
preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
# Process Results | |
pred_pil = transforms.ToPILImage()(pred) | |
pred_pil = pred_pil.resize(original_size, Image.BICUBIC) # Resize mask to original size | |
# Create reverse mask (background mask) | |
reverse_mask = ImageOps.invert(pred_pil) | |
# Create foreground image (object with transparent background) | |
foreground = image_ori.copy() | |
foreground.putalpha(pred_pil) | |
# Create background image | |
background = image_ori.copy() | |
background.putalpha(reverse_mask) | |
torch.cuda.empty_cache() | |
# Return images in the specified order | |
return foreground, background, pred_pil, reverse_mask | |
iface = gr.Interface( | |
fn=remove_background_wrapper, | |
inputs=gr.Image(type="numpy"), | |
outputs=[ | |
gr.Image(type="pil", label="Foreground"), | |
gr.Image(type="pil", label="Background"), | |
gr.Image(type="pil", label="Foreground Mask"), | |
gr.Image(type="pil", label="Background Mask") | |
], | |
allow_flagging="never" | |
) | |
if __name__ == "__main__": | |
iface.launch(debug=True) |