BiRefNet_demo / app.py
ghostsInTheMachine's picture
Update app.py
c36a9d3 verified
raw
history blame
4.02 kB
import os
import cv2
import numpy as np
import torch
import gradio as gr
import spaces # Required for @spaces.GPU
from PIL import Image, ImageOps
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
torch.set_float32_matmul_precision('high')
torch.jit.script = lambda f: f
device = "cuda" if torch.cuda.is_available() else "cpu"
def refine_foreground(image, mask, r=90):
if mask.size != image.size:
mask = mask.resize(image.size)
image = np.array(image) / 255.0
mask = np.array(mask) / 255.0
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
return image_masked
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
alpha = alpha[:, :, None]
F, blur_B = FB_blur_fusion_foreground_estimator(
image, image, image, alpha, r)
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
if isinstance(image, Image.Image):
image = np.array(image) / 255.0
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
blurred_FA = cv2.blur(F * alpha, (r, r))
blurred_F = blurred_FA / (blurred_alpha + 1e-5)
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
F = blurred_F + alpha * \
(image - alpha * blurred_F - (1 - alpha) * blurred_B)
F = np.clip(F, 0, 1)
return F, blurred_B
class ImagePreprocessor():
def __init__(self, resolution=(1024, 1024)) -> None:
self.transform_image = transforms.Compose([
transforms.Resize(resolution),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225]),
])
def proc(self, image: Image.Image) -> torch.Tensor:
image = self.transform_image(image)
return image
# Load the model
birefnet = AutoModelForImageSegmentation.from_pretrained(
'zhengpeng7/BiRefNet-matting', trust_remote_code=True)
birefnet.to(device)
birefnet.eval()
def remove_background_wrapper(image):
if image is None:
raise gr.Error("Please upload an image.")
image_ori = Image.fromarray(image).convert('RGB')
# Call the processing function
foreground, background, pred_pil, reverse_mask = remove_background(image_ori)
return foreground, background, pred_pil, reverse_mask
@spaces.GPU # Decorate the processing function
def remove_background(image_ori):
original_size = image_ori.size
# Preprocess the image
image_preprocessor = ImagePreprocessor(resolution=(1024, 1024))
image_proc = image_preprocessor.proc(image_ori)
image_proc = image_proc.unsqueeze(0)
# Prediction
with torch.no_grad():
preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu()
pred = preds[0].squeeze()
# Process Results
pred_pil = transforms.ToPILImage()(pred)
pred_pil = pred_pil.resize(original_size, Image.BICUBIC) # Resize mask to original size
# Create reverse mask (background mask)
reverse_mask = ImageOps.invert(pred_pil)
# Create foreground image (object with transparent background)
foreground = image_ori.copy()
foreground.putalpha(pred_pil)
# Create background image
background = image_ori.copy()
background.putalpha(reverse_mask)
torch.cuda.empty_cache()
# Return images in the specified order
return foreground, background, pred_pil, reverse_mask
iface = gr.Interface(
fn=remove_background_wrapper,
inputs=gr.Image(type="numpy"),
outputs=[
gr.Image(type="pil", label="Foreground"),
gr.Image(type="pil", label="Background"),
gr.Image(type="pil", label="Foreground Mask"),
gr.Image(type="pil", label="Background Mask")
],
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch(debug=True)