Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import cv2
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
import gradio as gr
|
6 |
-
import spaces #
|
7 |
|
8 |
from PIL import Image, ImageOps
|
9 |
from transformers import AutoModelForImageSegmentation
|
@@ -49,24 +49,30 @@ class ImagePreprocessor():
|
|
49 |
self.transform_image = transforms.Compose([
|
50 |
transforms.Resize(resolution),
|
51 |
transforms.ToTensor(),
|
52 |
-
transforms.Normalize([0.485, 0.456, 0.406],
|
|
|
53 |
])
|
54 |
|
55 |
def proc(self, image: Image.Image) -> torch.Tensor:
|
56 |
image = self.transform_image(image)
|
57 |
return image
|
58 |
|
|
|
59 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
60 |
'zhengpeng7/BiRefNet-matting', trust_remote_code=True)
|
61 |
birefnet.to(device)
|
62 |
birefnet.eval()
|
63 |
|
64 |
-
|
65 |
-
def remove_background(image):
|
66 |
if image is None:
|
67 |
raise gr.Error("Please upload an image.")
|
68 |
-
|
69 |
image_ori = Image.fromarray(image).convert('RGB')
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
original_size = image_ori.size
|
71 |
|
72 |
# Preprocess the image
|
@@ -100,7 +106,7 @@ def remove_background(image):
|
|
100 |
return foreground, background, pred_pil, reverse_mask
|
101 |
|
102 |
iface = gr.Interface(
|
103 |
-
fn=
|
104 |
inputs=gr.Image(type="numpy"),
|
105 |
outputs=[
|
106 |
gr.Image(type="pil", label="Foreground"),
|
|
|
3 |
import numpy as np
|
4 |
import torch
|
5 |
import gradio as gr
|
6 |
+
import spaces # Required for @spaces.GPU
|
7 |
|
8 |
from PIL import Image, ImageOps
|
9 |
from transformers import AutoModelForImageSegmentation
|
|
|
49 |
self.transform_image = transforms.Compose([
|
50 |
transforms.Resize(resolution),
|
51 |
transforms.ToTensor(),
|
52 |
+
transforms.Normalize([0.485, 0.456, 0.406],
|
53 |
+
[0.229, 0.224, 0.225]),
|
54 |
])
|
55 |
|
56 |
def proc(self, image: Image.Image) -> torch.Tensor:
|
57 |
image = self.transform_image(image)
|
58 |
return image
|
59 |
|
60 |
+
# Load the model
|
61 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
62 |
'zhengpeng7/BiRefNet-matting', trust_remote_code=True)
|
63 |
birefnet.to(device)
|
64 |
birefnet.eval()
|
65 |
|
66 |
+
def remove_background_wrapper(image):
|
|
|
67 |
if image is None:
|
68 |
raise gr.Error("Please upload an image.")
|
|
|
69 |
image_ori = Image.fromarray(image).convert('RGB')
|
70 |
+
# Call the processing function
|
71 |
+
foreground, background, pred_pil, reverse_mask = remove_background(image_ori)
|
72 |
+
return foreground, background, pred_pil, reverse_mask
|
73 |
+
|
74 |
+
@spaces.GPU # Decorate the processing function
|
75 |
+
def remove_background(image_ori):
|
76 |
original_size = image_ori.size
|
77 |
|
78 |
# Preprocess the image
|
|
|
106 |
return foreground, background, pred_pil, reverse_mask
|
107 |
|
108 |
iface = gr.Interface(
|
109 |
+
fn=remove_background_wrapper,
|
110 |
inputs=gr.Image(type="numpy"),
|
111 |
outputs=[
|
112 |
gr.Image(type="pil", label="Foreground"),
|