BiRefNet_demo / app.py
ghostsInTheMachine's picture
Update app.py
ea720f8 verified
raw
history blame
8.15 kB
import os
import cv2
import numpy as np
import torch
import gradio as gr
import spaces
from PIL import Image, ImageOps
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
torch.set_float32_matmul_precision('high')
torch.jit.script = lambda f: f
device = "cuda" if torch.cuda.is_available() else "cpu"
def refine_foreground(image, mask, r=90):
if mask.size != image.size:
mask = mask.resize(image.size)
image = np.array(image) / 255.0
mask = np.array(mask) / 255.0
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
return image_masked
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
alpha = alpha[:, :, None]
F, blur_B = FB_blur_fusion_foreground_estimator(
image, image, image, alpha, r)
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
if isinstance(image, Image.Image):
image = np.array(image) / 255.0
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
blurred_FA = cv2.blur(F * alpha, (r, r))
blurred_F = blurred_FA / (blurred_alpha + 1e-5)
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
F = blurred_F + alpha * \
(image - alpha * blurred_F - (1 - alpha) * blurred_B)
F = np.clip(F, 0, 1)
return F, blurred_B
class ImagePreprocessor():
def __init__(self, resolution=(1024, 1024)) -> None:
self.transform_image = transforms.Compose([
transforms.Resize(resolution),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def proc(self, image: Image.Image) -> torch.Tensor:
image = self.transform_image(image)
return image
birefnet = AutoModelForImageSegmentation.from_pretrained('zhengpeng7/BiRefNet-matting', trust_remote_code=True)
birefnet.to(device)
birefnet.eval()
@spaces.GPU
def remove_background(image):
if image is None:
raise gr.Error("Please upload an image.")
image_ori = Image.fromarray(image).convert('RGB')
original_size = image_ori.size
# Preprocess the image
image_preprocessor = ImagePreprocessor(resolution=(1024, 1024))
image_proc = image_preprocessor.proc(image_ori)
image_proc = image_proc.unsqueeze(0)
# Prediction
with torch.no_grad():
preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu()
pred = preds[0].squeeze()
# Process Results
pred_pil = transforms.ToPILImage()(pred)
pred_pil = pred_pil.resize(original_size, Image.BICUBIC) # Resize mask to original size
# Create reverse mask
reverse_mask = Image.new('L', original_size)
reverse_mask.paste(ImageOps.invert(pred_pil))
# Create foreground image (object with transparent background)
foreground = image_ori.copy()
foreground.putalpha(pred_pil)
# Create background image
background = image_ori.copy()
background.putalpha(reverse_mask)
torch.cuda.empty_cache()
# Save all images
mask_path = "mask.png"
pred_pil.save(mask_path)
reverse_mask_path = "reverse_mask.png"
reverse_mask.save(reverse_mask_path)
foreground_path = "foreground.png"
foreground.save(foreground_path)
background_path = "background.png"
background.save(background_path)
return mask_path, reverse_mask_path, foreground_path, background_path
license_text = """
MIT License
Copyright (c) 2024 ZhengPeng
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
css = """
body {
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
}
.gradio-container {
background: white;
}
#component-0 button {
font-family: inherit !important;
font-size: 16px !important;
font-weight: bold !important;
color: #000000 !important;
background: linear-gradient(
135deg,
#e0f7fa, #e8f5e9, #fff9c4, #ffebee,
#f3e5f5, #e1f5fe, #fff3e0, #e8eaf6
) !important;
background-size: 400% 400% !important;
animation: gradient-animation 15s ease infinite !important;
border: 2px solid black !important;
border-radius: 10px !important;
}
#component-0 button:hover {
background: linear-gradient(
135deg,
#b2ebf2, #c8e6c9, #fff176, #ffcdd2,
#e1bee7, #b3e5fc, #ffe0b2, #c5cae9
) !important;
background-size: 400% 400% !important;
animation: gradient-animation 15s ease infinite !important;
}
@keyframes gradient-animation {
0% { background-position: 0% 50%; }
50% { background-position: 100% 50%; }
100% { background-position: 0% 50%; }
}
footer {
text-align: center;
margin-top: 20px;
}
.license-link {
color: #007bff;
text-decoration: none;
cursor: pointer;
}
.license-link:hover {
text-decoration: underline;
}
.modal {
display: none;
position: fixed;
z-index: 1000;
left: 0;
top: 0;
width: 100%;
height: 100%;
overflow: auto;
background-color: rgba(0,0,0,0.4);
}
.modal-content {
background-color: #fefefe;
margin: 15% auto;
padding: 20px;
border: 1px solid #888;
width: 80%;
max-width: 600px;
}
.close {
color: #aaa;
float: right;
font-size: 28px;
font-weight: bold;
}
.close:hover,
.close:focus {
color: black;
text-decoration: none;
cursor: pointer;
}
"""
js = """
function setupLicenseModal() {
var modal = document.createElement('div');
modal.className = 'modal';
modal.innerHTML = `
<div class="modal-content">
<span class="close">&times;</span>
<h2>License</h2>
<pre>${license_text}</pre>
</div>
`;
document.body.appendChild(modal);
var link = document.createElement('a');
link.href = '#';
link.className = 'license-link';
link.textContent = 'License';
link.onclick = function(e) {
e.preventDefault();
modal.style.display = 'block';
};
var footer = document.createElement('footer');
footer.appendChild(link);
document.body.appendChild(footer);
var span = modal.querySelector('.close');
span.onclick = function() {
modal.style.display = 'none';
};
window.onclick = function(event) {
if (event.target == modal) {
modal.style.display = 'none';
}
};
}
if (window.gradio_config.version.startsWith('3')) {
setupLicenseModal();
} else {
document.addEventListener('DOMContentLoaded', setupLicenseModal);
}
"""
iface = gr.Interface(
fn=remove_background,
inputs=gr.Image(type="numpy"),
outputs=[
gr.Image(type="filepath", label="Mask"),
gr.Image(type="filepath", label="Reverse Mask"),
gr.Image(type="filepath", label="Foreground"),
gr.Image(type="filepath", label="Background")
],
allow_flagging="never",
css=css,
js=js,
elem_id="remove-background"
)
if __name__ == "__main__":
iface.launch(debug=True)