Depreesion / app /app_utils.py
vitorcalvi's picture
pre-launch
fc286f6
"""
File: app_utils.py
Author: Elena Ryumina and Dmitry Ryumin (modified by Assistant)
Description: This module contains utility functions for facial expression recognition application, including FACS Analysis for SAD.
License: MIT License
"""
import torch
import numpy as np
import mediapipe as mp
from PIL import Image
import cv2
from pytorch_grad_cam.utils.image import show_cam_on_image
import matplotlib.pyplot as plt
# Importing necessary components for the Gradio app
from app.model import pth_model_static, pth_model_dynamic, cam, pth_processing
from app.face_utils import get_box, display_info
from app.config import DICT_EMO, config_data
from app.plot import statistics_plot
mp_face_mesh = mp.solutions.face_mesh
def preprocess_image_and_predict(inp):
inp = np.array(inp)
if inp is None:
return None, None, None
try:
h, w = inp.shape[:2]
except Exception:
return None, None, None
with mp_face_mesh.FaceMesh(
max_num_faces=1,
refine_landmarks=False,
min_detection_confidence=0.5,
min_tracking_confidence=0.5,
) as face_mesh:
results = face_mesh.process(inp)
if results.multi_face_landmarks:
for fl in results.multi_face_landmarks:
startX, startY, endX, endY = get_box(fl, w, h)
cur_face = inp[startY:endY, startX:endX]
cur_face_n = pth_processing(Image.fromarray(cur_face))
with torch.no_grad():
prediction = (
torch.nn.functional.softmax(pth_model_static(cur_face_n), dim=1)
.detach()
.numpy()[0]
)
confidences = {DICT_EMO[i]: float(prediction[i]) for i in range(7)}
grayscale_cam = cam(input_tensor=cur_face_n)
grayscale_cam = grayscale_cam[0, :]
cur_face_hm = cv2.resize(cur_face,(224,224))
cur_face_hm = np.float32(cur_face_hm) / 255
heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=True)
return cur_face, heatmap, confidences
def preprocess_frame_and_predict_aus(frame):
if len(frame.shape) == 2:
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2RGB)
elif frame.shape[2] == 4:
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
with mp_face_mesh.FaceMesh(
max_num_faces=1,
refine_landmarks=False,
min_detection_confidence=0.5,
min_tracking_confidence=0.5
) as face_mesh:
results = face_mesh.process(frame)
if results.multi_face_landmarks:
h, w = frame.shape[:2]
for fl in results.multi_face_landmarks:
startX, startY, endX, endY = get_box(fl, w, h)
cur_face = frame[startY:endY, startX:endX]
cur_face_n = pth_processing(Image.fromarray(cur_face))
with torch.no_grad():
features = pth_model_static(cur_face_n)
au_intensities = features_to_au_intensities(features)
grayscale_cam = cam(input_tensor=cur_face_n)
grayscale_cam = grayscale_cam[0, :]
cur_face_hm = cv2.resize(cur_face, (224, 224))
cur_face_hm = np.float32(cur_face_hm) / 255
heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=True)
return cur_face, au_intensities, heatmap
return None, None, None
def features_to_au_intensities(features):
features_np = features.detach().cpu().numpy()[0]
au_intensities = (features_np - features_np.min()) / (features_np.max() - features_np.min())
return au_intensities[:24] # Assuming we want 24 AUs
def preprocess_video_and_predict(video):
cap = cv2.VideoCapture(video)
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = np.round(cap.get(cv2.CAP_PROP_FPS))
path_save_video_face = 'result_face.mp4'
vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
path_save_video_hm = 'result_hm.mp4'
vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
lstm_features = []
count_frame = 1
count_face = 0
probs = []
frames = []
au_intensities_list = []
last_output = None
last_heatmap = None
last_au_intensities = None
cur_face = None
with mp_face_mesh.FaceMesh(
max_num_faces=1,
refine_landmarks=False,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as face_mesh:
while cap.isOpened():
_, frame = cap.read()
if frame is None: break
frame_copy = frame.copy()
frame_copy.flags.writeable = False
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
results = face_mesh.process(frame_copy)
frame_copy.flags.writeable = True
if results.multi_face_landmarks:
for fl in results.multi_face_landmarks:
startX, startY, endX, endY = get_box(fl, w, h)
cur_face = frame_copy[startY:endY, startX: endX]
if count_face%config_data.FRAME_DOWNSAMPLING == 0:
cur_face_copy = pth_processing(Image.fromarray(cur_face))
with torch.no_grad():
features = torch.nn.functional.relu(pth_model_static.extract_features(cur_face_copy)).detach().numpy()
au_intensities = features_to_au_intensities(pth_model_static(cur_face_copy))
grayscale_cam = cam(input_tensor=cur_face_copy)
grayscale_cam = grayscale_cam[0, :]
cur_face_hm = cv2.resize(cur_face,(224,224), interpolation = cv2.INTER_AREA)
cur_face_hm = np.float32(cur_face_hm) / 255
heatmap = show_cam_on_image(cur_face_hm, grayscale_cam, use_rgb=False)
last_heatmap = heatmap
last_au_intensities = au_intensities
if len(lstm_features) == 0:
lstm_features = [features]*10
else:
lstm_features = lstm_features[1:] + [features]
lstm_f = torch.from_numpy(np.vstack(lstm_features))
lstm_f = torch.unsqueeze(lstm_f, 0)
with torch.no_grad():
output = pth_model_dynamic(lstm_f).detach().numpy()
last_output = output
if count_face == 0:
count_face += 1
else:
if last_output is not None:
output = last_output
heatmap = last_heatmap
au_intensities = last_au_intensities
elif last_output is None:
output = np.empty((1, 7))
output[:] = np.nan
au_intensities = np.empty(24)
au_intensities[:] = np.nan
probs.append(output[0])
frames.append(count_frame)
au_intensities_list.append(au_intensities)
else:
if last_output is not None:
lstm_features = []
empty = np.empty((7))
empty[:] = np.nan
probs.append(empty)
frames.append(count_frame)
au_intensities_list.append(np.full(24, np.nan))
if cur_face is not None:
heatmap_f = display_info(heatmap, 'Frame: {}'.format(count_frame), box_scale=.3)
cur_face = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
cur_face = cv2.resize(cur_face, (224,224), interpolation = cv2.INTER_AREA)
cur_face = display_info(cur_face, 'Frame: {}'.format(count_frame), box_scale=.3)
vid_writer_face.write(cur_face)
vid_writer_hm.write(heatmap_f)
count_frame += 1
if count_face != 0:
count_face += 1
vid_writer_face.release()
vid_writer_hm.release()
stat = statistics_plot(frames, probs)
au_stat = au_statistics_plot(frames, au_intensities_list)
if not stat or not au_stat:
return None, None, None, None, None
return video, path_save_video_face, path_save_video_hm, stat, au_stat
def au_statistics_plot(frames, au_intensities_list):
fig, ax = plt.subplots(figsize=(12, 6))
au_intensities_array = np.array(au_intensities_list)
for i in range(au_intensities_array.shape[1]):
ax.plot(frames, au_intensities_array[:, i], label=f'AU{i+1}')
ax.set_xlabel('Frame')
ax.set_ylabel('AU Intensity')
ax.set_title('Action Unit Intensities Over Time')
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
plt.tight_layout()
return fig
def preprocess_video_and_predict_sleep_quality(video):
cap = cv2.VideoCapture(video)
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = np.round(cap.get(cv2.CAP_PROP_FPS))
path_save_video_original = 'result_original.mp4'
path_save_video_face = 'result_face.mp4'
path_save_video_sleep = 'result_sleep.mp4'
vid_writer_original = cv2.VideoWriter(path_save_video_original, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
vid_writer_sleep = cv2.VideoWriter(path_save_video_sleep, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
frames = []
sleep_quality_scores = []
eye_bags_images = []
with mp_face_mesh.FaceMesh(
max_num_faces=1,
refine_landmarks=False,
min_detection_confidence=0.5,
min_tracking_confidence=0.5) as face_mesh:
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = face_mesh.process(frame_rgb)
if results.multi_face_landmarks:
for fl in results.multi_face_landmarks:
startX, startY, endX, endY = get_box(fl, w, h)
cur_face = frame_rgb[startY:endY, startX:endX]
sleep_quality_score, eye_bags_image = analyze_sleep_quality(cur_face)
sleep_quality_scores.append(sleep_quality_score)
eye_bags_images.append(cv2.resize(eye_bags_image, (224, 224)))
sleep_quality_viz = create_sleep_quality_visualization(cur_face, sleep_quality_score)
cur_face = cv2.resize(cur_face, (224, 224))
vid_writer_face.write(cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR))
vid_writer_sleep.write(sleep_quality_viz)
vid_writer_original.write(frame)
frames.append(len(frames) + 1)
cap.release()
vid_writer_original.release()
vid_writer_face.release()
vid_writer_sleep.release()
sleep_stat = sleep_quality_statistics_plot(frames, sleep_quality_scores)
if eye_bags_images:
average_eye_bags_image = np.mean(np.array(eye_bags_images), axis=0).astype(np.uint8)
else:
average_eye_bags_image = np.zeros((224, 224, 3), dtype=np.uint8)
return (path_save_video_original, path_save_video_face, path_save_video_sleep,
average_eye_bags_image, sleep_stat)
def analyze_sleep_quality(face_image):
# Placeholder function - implement your sleep quality analysis here
sleep_quality_score = np.random.random()
eye_bags_image = cv2.resize(face_image, (224, 224))
return sleep_quality_score, eye_bags_image
def create_sleep_quality_visualization(face_image, sleep_quality_score):
viz = face_image.copy()
cv2.putText(viz, f"Sleep Quality: {sleep_quality_score:.2f}", (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
return cv2.cvtColor(viz, cv2.COLOR_RGB2BGR)
def sleep_quality_statistics_plot(frames, sleep_quality_scores):
# Placeholder function - implement your statistics plotting here
fig, ax = plt.subplots()
ax.plot(frames, sleep_quality_scores)
ax.set_xlabel('Frame')
ax.set_ylabel('Sleep Quality Score')
ax.set_title('Sleep Quality Over Time')
return fig