File size: 940 Bytes
9bc5b30
7bbe0a9
9bc5b30
7bbe0a9
 
468924d
9bc5b30
7bbe0a9
 
 
 
3e182cf
7bbe0a9
 
 
 
 
 
3e182cf
7bbe0a9
 
57642d9
7bbe0a9
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import streamlit as st
import requests

# Hugging Face API details
API_URL = "https://api-inference.huggingface.co/models/facebook/blenderbot-400M-distill"
headers = {"Authorization": f"Bearer {rag}"}

# Function to query the model
def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

# Streamlit UI for Mental Health Chatbot
st.title("Mental Health Chatbot")
st.write("""
This chatbot provides responses to mental health-related queries. 
Please note that this is an AI-based tool and is not a substitute for professional mental health support.
""")

# User input
user_input = st.text_input("How can I help you today?")

if st.button("Get Response"):
    if user_input:
        # Query the model
        output = query({"inputs": user_input})
        st.write(f"**Response:** {output['generated_text']}")
    else:
        st.write("Please enter a query to get a response.")