Spaces:
Running
Running
Error Handling + Joe's Suggestion + FileNaming
#3
by
parthbhangla
- opened
app.py
CHANGED
@@ -47,31 +47,24 @@ def load_model_and_predict(
|
|
47 |
audio_in: str,
|
48 |
model_state: dict,
|
49 |
):
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
model_state
|
59 |
-
|
60 |
-
task="automatic-speech-recognition", model=model_name
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
model_state,
|
69 |
-
gr.Textbox(
|
70 |
-
label=TEXTGRID_NAME_INPUT_LABEL,
|
71 |
-
interactive=True,
|
72 |
-
value=Path(audio_in).with_suffix(".TextGrid").name,
|
73 |
-
),
|
74 |
-
)
|
75 |
|
76 |
|
77 |
def get_textgrid_contents(audio_in, textgrid_tier_name, transcription_prediction):
|
@@ -144,6 +137,34 @@ def extract_tier_names(textgrid_file):
|
|
144 |
return gr.update(choices=tier_names, value=tier_names[0] if tier_names else None)
|
145 |
except Exception as e:
|
146 |
return gr.update(choices=[], value=None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
|
149 |
def launch_demo():
|
@@ -154,10 +175,6 @@ def launch_demo():
|
|
154 |
"model_name": DEFAULT_MODEL,
|
155 |
}
|
156 |
|
157 |
-
# Helper function - enables the interval transcribe button
|
158 |
-
def enable_interval_transcribe_btn(audio, textgrid):
|
159 |
-
return gr.update(interactive=(audio is not None and textgrid is not None))
|
160 |
-
|
161 |
with gr.Blocks() as demo:
|
162 |
gr.Markdown("""# Automatic International Phonetic Alphabet Transcription
|
163 |
This demo allows you to experiment with producing phonetic transcriptions of uploaded or recorded audio using a selected automatic speech recognition (ASR) model.""")
|
@@ -172,7 +189,7 @@ def launch_demo():
|
|
172 |
|
173 |
# Dropdown for transcription type selection
|
174 |
transcription_type = gr.Dropdown(
|
175 |
-
choices=["Full Audio", "Interval"],
|
176 |
label="Transcription Type",
|
177 |
value=None,
|
178 |
interactive=True,
|
@@ -187,7 +204,6 @@ def launch_demo():
|
|
187 |
full_prediction = gr.Textbox(label="IPA Transcription", show_copy_button=True)
|
188 |
|
189 |
full_textgrid_tier = gr.Textbox(label="TextGrid Tier Name", value="transcription", interactive=True)
|
190 |
-
full_textgrid_filename = gr.Textbox(label=TEXTGRID_NAME_INPUT_LABEL, interactive=False)
|
191 |
|
192 |
full_textgrid_contents = gr.Textbox(label="TextGrid Contents", show_copy_button=True)
|
193 |
full_download_btn = gr.DownloadButton(label=TEXTGRID_DOWNLOAD_TEXT, interactive=False, variant="primary")
|
@@ -209,7 +225,7 @@ def launch_demo():
|
|
209 |
transcription_type.change(
|
210 |
fn=lambda t: (
|
211 |
gr.update(visible=t == "Full Audio"),
|
212 |
-
gr.update(visible=t == "Interval"),
|
213 |
),
|
214 |
inputs=transcription_type,
|
215 |
outputs=[full_audio_section, interval_section],
|
@@ -226,7 +242,7 @@ def launch_demo():
|
|
226 |
full_transcribe_btn.click(
|
227 |
fn=load_model_and_predict,
|
228 |
inputs=[model_name, full_audio, model_state],
|
229 |
-
outputs=[full_prediction, model_state
|
230 |
)
|
231 |
|
232 |
full_prediction.change(
|
@@ -236,25 +252,29 @@ def launch_demo():
|
|
236 |
)
|
237 |
|
238 |
full_textgrid_contents.change(
|
239 |
-
fn=get_interactive_download_button
|
240 |
-
|
|
|
|
|
|
|
241 |
outputs=[full_download_btn],
|
242 |
)
|
243 |
|
|
|
244 |
full_reset_btn.click(
|
245 |
fn=lambda: (None, "", "", "", gr.update(interactive=False)),
|
246 |
-
outputs=[full_audio, full_prediction,
|
247 |
)
|
248 |
|
249 |
# Enable interval transcribe button only when both files are uploaded
|
250 |
interval_audio.change(
|
251 |
-
fn=
|
252 |
inputs=[interval_audio, interval_textgrid_file],
|
253 |
outputs=[interval_transcribe_btn],
|
254 |
)
|
255 |
|
256 |
interval_textgrid_file.change(
|
257 |
-
fn=
|
258 |
inputs=[interval_audio, interval_textgrid_file],
|
259 |
outputs=[interval_transcribe_btn],
|
260 |
)
|
@@ -273,8 +293,14 @@ def launch_demo():
|
|
273 |
)
|
274 |
|
275 |
interval_result.change(
|
276 |
-
fn=lambda tg_text: gr.update(
|
277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
outputs=[interval_download_btn],
|
279 |
)
|
280 |
|
@@ -286,4 +312,4 @@ def launch_demo():
|
|
286 |
demo.launch(max_file_size="100mb")
|
287 |
|
288 |
if __name__ == "__main__":
|
289 |
-
launch_demo()
|
|
|
47 |
audio_in: str,
|
48 |
model_state: dict,
|
49 |
):
|
50 |
+
try:
|
51 |
+
if audio_in is None:
|
52 |
+
return (
|
53 |
+
"",
|
54 |
+
model_state,
|
55 |
+
gr.Textbox(label=TEXTGRID_NAME_INPUT_LABEL, interactive=False),
|
56 |
+
)
|
57 |
+
|
58 |
+
if model_state["model_name"] != model_name:
|
59 |
+
model_state = {
|
60 |
+
"loaded_model": pipeline(task="automatic-speech-recognition", model=model_name),
|
61 |
+
"model_name": model_name,
|
62 |
+
}
|
63 |
+
|
64 |
+
prediction = model_state["loaded_model"](audio_in)["text"]
|
65 |
+
return prediction, model_state
|
66 |
+
except Exception as e:
|
67 |
+
raise gr.Error(f"Failed to load model: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
|
70 |
def get_textgrid_contents(audio_in, textgrid_tier_name, transcription_prediction):
|
|
|
137 |
return gr.update(choices=tier_names, value=tier_names[0] if tier_names else None)
|
138 |
except Exception as e:
|
139 |
return gr.update(choices=[], value=None)
|
140 |
+
|
141 |
+
|
142 |
+
def validate_textgrid_for_intervals(audio_path, textgrid_file):
|
143 |
+
try:
|
144 |
+
if not audio_path or not textgrid_file:
|
145 |
+
return gr.update(interactive=False)
|
146 |
+
|
147 |
+
audio_duration = librosa.get_duration(path=audio_path)
|
148 |
+
tg = tgt.io.read_textgrid(textgrid_file.name)
|
149 |
+
tg_end_time = max(tier.end_time for tier in tg.tiers)
|
150 |
+
|
151 |
+
if tg_end_time > audio_duration:
|
152 |
+
raise gr.Error(
|
153 |
+
f"TextGrid ends at {tg_end_time:.2f}s but audio is only {audio_duration:.2f}s. "
|
154 |
+
"Please upload matching files."
|
155 |
+
)
|
156 |
+
|
157 |
+
epsilon = 0.01
|
158 |
+
if abs(tg_end_time - audio_duration) > epsilon:
|
159 |
+
gr.Warning(
|
160 |
+
f"TextGrid ends at {tg_end_time:.2f}s but audio is {audio_duration:.2f}s. "
|
161 |
+
"Only the annotated portion will be transcribed."
|
162 |
+
)
|
163 |
+
|
164 |
+
return gr.update(interactive=True)
|
165 |
+
|
166 |
+
except Exception as e:
|
167 |
+
raise gr.Error(f"Invalid TextGrid or audio file:\n{str(e)}")
|
168 |
|
169 |
|
170 |
def launch_demo():
|
|
|
175 |
"model_name": DEFAULT_MODEL,
|
176 |
}
|
177 |
|
|
|
|
|
|
|
|
|
178 |
with gr.Blocks() as demo:
|
179 |
gr.Markdown("""# Automatic International Phonetic Alphabet Transcription
|
180 |
This demo allows you to experiment with producing phonetic transcriptions of uploaded or recorded audio using a selected automatic speech recognition (ASR) model.""")
|
|
|
189 |
|
190 |
# Dropdown for transcription type selection
|
191 |
transcription_type = gr.Dropdown(
|
192 |
+
choices=["Full Audio", "TextGrid Interval"],
|
193 |
label="Transcription Type",
|
194 |
value=None,
|
195 |
interactive=True,
|
|
|
204 |
full_prediction = gr.Textbox(label="IPA Transcription", show_copy_button=True)
|
205 |
|
206 |
full_textgrid_tier = gr.Textbox(label="TextGrid Tier Name", value="transcription", interactive=True)
|
|
|
207 |
|
208 |
full_textgrid_contents = gr.Textbox(label="TextGrid Contents", show_copy_button=True)
|
209 |
full_download_btn = gr.DownloadButton(label=TEXTGRID_DOWNLOAD_TEXT, interactive=False, variant="primary")
|
|
|
225 |
transcription_type.change(
|
226 |
fn=lambda t: (
|
227 |
gr.update(visible=t == "Full Audio"),
|
228 |
+
gr.update(visible=t == "TextGrid Interval"),
|
229 |
),
|
230 |
inputs=transcription_type,
|
231 |
outputs=[full_audio_section, interval_section],
|
|
|
242 |
full_transcribe_btn.click(
|
243 |
fn=load_model_and_predict,
|
244 |
inputs=[model_name, full_audio, model_state],
|
245 |
+
outputs=[full_prediction, model_state],
|
246 |
)
|
247 |
|
248 |
full_prediction.change(
|
|
|
252 |
)
|
253 |
|
254 |
full_textgrid_contents.change(
|
255 |
+
fn=lambda tg_text, audio_path: get_interactive_download_button(
|
256 |
+
tg_text,
|
257 |
+
Path(audio_path).with_suffix(".TextGrid").name if audio_path else "output.TextGrid"
|
258 |
+
),
|
259 |
+
inputs=[full_textgrid_contents, full_audio],
|
260 |
outputs=[full_download_btn],
|
261 |
)
|
262 |
|
263 |
+
|
264 |
full_reset_btn.click(
|
265 |
fn=lambda: (None, "", "", "", gr.update(interactive=False)),
|
266 |
+
outputs=[full_audio, full_prediction, full_textgrid_contents, full_download_btn],
|
267 |
)
|
268 |
|
269 |
# Enable interval transcribe button only when both files are uploaded
|
270 |
interval_audio.change(
|
271 |
+
fn=validate_textgrid_for_intervals,
|
272 |
inputs=[interval_audio, interval_textgrid_file],
|
273 |
outputs=[interval_transcribe_btn],
|
274 |
)
|
275 |
|
276 |
interval_textgrid_file.change(
|
277 |
+
fn=validate_textgrid_for_intervals,
|
278 |
inputs=[interval_audio, interval_textgrid_file],
|
279 |
outputs=[interval_transcribe_btn],
|
280 |
)
|
|
|
293 |
)
|
294 |
|
295 |
interval_result.change(
|
296 |
+
fn=lambda tg_text, audio_path: gr.update(
|
297 |
+
value=write_textgrid(
|
298 |
+
tg_text,
|
299 |
+
Path(audio_path).with_suffix(".TextGrid").name
|
300 |
+
),
|
301 |
+
interactive=True,
|
302 |
+
),
|
303 |
+
inputs=[interval_result, interval_audio],
|
304 |
outputs=[interval_download_btn],
|
305 |
)
|
306 |
|
|
|
312 |
demo.launch(max_file_size="100mb")
|
313 |
|
314 |
if __name__ == "__main__":
|
315 |
+
launch_demo()
|