Update app.py
Browse files
app.py
CHANGED
@@ -28,16 +28,73 @@ clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
|
|
28 |
longformer_tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
|
29 |
longformer_model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
|
30 |
|
31 |
-
def
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
return inputs
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
# Example usage
|
37 |
input_text = "Your long prompt goes here..."
|
38 |
-
inputs =
|
39 |
|
40 |
-
#Load prompts for randomization
|
41 |
df = pd.read_csv('prompts.csv', header=None)
|
42 |
prompt_values = df.values.flatten()
|
43 |
|
|
|
28 |
longformer_tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
|
29 |
longformer_model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
|
30 |
|
31 |
+
def preprocess_prompt(input_text, max_clip_tokens=77):
|
32 |
+
"""
|
33 |
+
Preprocess the input prompt based on its length:
|
34 |
+
- If the prompt is <= max_clip_tokens, summarize it.
|
35 |
+
- If the prompt is > max_clip_tokens, split and process it.
|
36 |
+
"""
|
37 |
+
# Tokenize the prompt to determine its token length
|
38 |
+
tokens = clip_processor.tokenizer(input_text, return_tensors="pt")["input_ids"][0]
|
39 |
+
token_count = len(tokens)
|
40 |
+
|
41 |
+
if token_count <= max_clip_tokens:
|
42 |
+
# Use summarization for shorter prompts
|
43 |
+
print("Using summarization (Option 5) as the prompt is short.")
|
44 |
+
return process_summarized_input(input_text)
|
45 |
+
else:
|
46 |
+
# Use split-and-process for longer prompts
|
47 |
+
print("Using chunking (Option 3) as the prompt exceeds 77 tokens.")
|
48 |
+
return process_clip_chunks(input_text)
|
49 |
+
|
50 |
+
|
51 |
+
# Summarization Function (Option 5)
|
52 |
+
def summarize_prompt(input_text, max_length=77):
|
53 |
+
"""
|
54 |
+
Summarizes the input text to fit within the CLIP token limit.
|
55 |
+
Basic implementation uses the first `max_length` tokens.
|
56 |
+
"""
|
57 |
+
summarized_text = " ".join(input_text.split()[:max_length]) # Simple summarization: First 77 words
|
58 |
+
print(f"Summarized prompt: {summarized_text}")
|
59 |
+
return summarized_text
|
60 |
+
|
61 |
+
|
62 |
+
def process_summarized_input(input_text):
|
63 |
+
"""
|
64 |
+
Prepares summarized text for CLIP processing.
|
65 |
+
"""
|
66 |
+
summarized_text = summarize_prompt(input_text, max_length=77)
|
67 |
+
inputs = clip_processor(text=summarized_text, return_tensors="pt", padding=True, truncation=True, max_length=77)
|
68 |
return inputs
|
69 |
|
70 |
+
|
71 |
+
# Chunking Function (Option 3)
|
72 |
+
def split_prompt(prompt, chunk_size=77):
|
73 |
+
"""Splits a long prompt into chunks of the specified token size."""
|
74 |
+
tokens = clip_processor.tokenizer(prompt, return_tensors="pt")["input_ids"][0]
|
75 |
+
chunks = [tokens[i:i + chunk_size] for i in range(0, len(tokens), chunk_size)]
|
76 |
+
return chunks
|
77 |
+
|
78 |
+
|
79 |
+
def process_clip_chunks(input_text):
|
80 |
+
"""
|
81 |
+
Tokenizes and processes a long input text in chunks for CLIP.
|
82 |
+
Each chunk respects the model's 77-token limit.
|
83 |
+
"""
|
84 |
+
chunks = split_prompt(input_text)
|
85 |
+
processed_chunks = []
|
86 |
+
for chunk in chunks:
|
87 |
+
chunk_text = clip_processor.tokenizer.decode(chunk, skip_special_tokens=True)
|
88 |
+
inputs = clip_processor(text=chunk_text, return_tensors="pt", padding=True, truncation=True, max_length=77)
|
89 |
+
processed_chunks.append(inputs)
|
90 |
+
return processed_chunks # Return processed chunks for downstream usage
|
91 |
+
|
92 |
+
|
93 |
# Example usage
|
94 |
input_text = "Your long prompt goes here..."
|
95 |
+
inputs = preprocess_prompt(input_text)
|
96 |
|
97 |
+
# Load prompts for randomization
|
98 |
df = pd.read_csv('prompts.csv', header=None)
|
99 |
prompt_values = df.values.flatten()
|
100 |
|