Update app.py
Browse files
app.py
CHANGED
@@ -28,6 +28,10 @@ clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16")
|
|
28 |
longformer_tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
|
29 |
longformer_model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
|
30 |
|
|
|
|
|
|
|
|
|
31 |
def preprocess_prompt(input_text, max_clip_tokens=77):
|
32 |
"""
|
33 |
Preprocess the input prompt based on its length:
|
@@ -68,13 +72,16 @@ def process_summarized_input(input_text):
|
|
68 |
return inputs
|
69 |
|
70 |
|
71 |
-
|
72 |
-
def split_prompt(prompt, chunk_size=77):
|
73 |
-
"""Splits a long prompt into chunks of the specified token size."""
|
74 |
tokens = clip_processor.tokenizer(prompt, return_tensors="pt")["input_ids"][0]
|
75 |
-
chunks = [
|
|
|
|
|
|
|
76 |
return chunks
|
77 |
-
|
|
|
|
|
78 |
|
79 |
def process_clip_chunks(input_text):
|
80 |
"""
|
@@ -89,11 +96,6 @@ def process_clip_chunks(input_text):
|
|
89 |
processed_chunks.append(inputs)
|
90 |
return processed_chunks # Return processed chunks for downstream usage
|
91 |
|
92 |
-
|
93 |
-
# Example usage
|
94 |
-
input_text = "Your long prompt goes here..."
|
95 |
-
inputs = preprocess_prompt(input_text)
|
96 |
-
|
97 |
# Load prompts for randomization
|
98 |
df = pd.read_csv('prompts.csv', header=None)
|
99 |
prompt_values = df.values.flatten()
|
|
|
28 |
longformer_tokenizer = LongformerTokenizer.from_pretrained("allenai/longformer-base-4096")
|
29 |
longformer_model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
|
30 |
|
31 |
+
# Example usage
|
32 |
+
input_text = "Your long prompt goes here..."
|
33 |
+
inputs = preprocess_prompt(input_text)
|
34 |
+
|
35 |
def preprocess_prompt(input_text, max_clip_tokens=77):
|
36 |
"""
|
37 |
Preprocess the input prompt based on its length:
|
|
|
72 |
return inputs
|
73 |
|
74 |
|
75 |
+
def split_prompt_with_overlap(prompt, chunk_size=77, overlap=10):
|
|
|
|
|
76 |
tokens = clip_processor.tokenizer(prompt, return_tensors="pt")["input_ids"][0]
|
77 |
+
chunks = [
|
78 |
+
tokens[i:max(i + chunk_size, len(tokens))]
|
79 |
+
for i in range(0, len(tokens), chunk_size - overlap)
|
80 |
+
]
|
81 |
return chunks
|
82 |
+
|
83 |
+
chunks = split_prompt("Test " * 200)
|
84 |
+
assert all(len(chunk) <= 77 for chunk in chunks), "Chunk size exceeded"
|
85 |
|
86 |
def process_clip_chunks(input_text):
|
87 |
"""
|
|
|
96 |
processed_chunks.append(inputs)
|
97 |
return processed_chunks # Return processed chunks for downstream usage
|
98 |
|
|
|
|
|
|
|
|
|
|
|
99 |
# Load prompts for randomization
|
100 |
df = pd.read_csv('prompts.csv', header=None)
|
101 |
prompt_values = df.values.flatten()
|