Spaces:
Running
Running
import os | |
import time | |
from os import path | |
import tempfile | |
import uuid | |
import base64 | |
import mimetypes | |
import json | |
import torch | |
from safetensors.torch import load_file | |
from huggingface_hub import hf_hub_download | |
# Diffusers ๊ด๋ จ ๋ผ์ด๋ธ๋ฌ๋ฆฌ | |
import gradio as gr | |
from diffusers import FluxPipeline | |
# Google GenAI ๋ผ์ด๋ธ๋ฌ๋ฆฌ | |
from google import genai | |
from google.genai import types | |
####################################### | |
# 0. ํ๊ฒฝ์ค์ | |
####################################### | |
# ๋ชจ๋ธ ์บ์ ๋๋ ํ ๋ฆฌ ์ค์ | |
BASE_DIR = path.dirname(path.abspath(__file__)) if "__file__" in globals() else os.getcwd() | |
CACHE_PATH = path.join(BASE_DIR, "models") | |
os.environ["TRANSFORMERS_CACHE"] = CACHE_PATH | |
os.environ["HF_HUB_CACHE"] = CACHE_PATH | |
os.environ["HF_HOME"] = CACHE_PATH | |
# Google GenAI ์ฌ์ฉ์ ์ํด์๋ ๋ค์๊ณผ ๊ฐ์ ํ๊ฒฝ ๋ณ์๊ฐ ํ์ํฉ๋๋ค. | |
# os.environ["GAPI_TOKEN"] = "<YOUR_GOOGLE_GENAI_API_KEY>" | |
# ์์ ์๊ฐ ์ธก์ ์ ์ํ ๊ฐ๋จํ ํ์ด๋จธ ํด๋์ค | |
class timer: | |
def __init__(self, method_name="timed process"): | |
self.method = method_name | |
def __enter__(self): | |
self.start = time.time() | |
print(f"{self.method} starts") | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
end = time.time() | |
print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
####################################### | |
# 1. FLUX ํ์ดํ๋ผ์ธ ๋ก๋ | |
####################################### | |
if not path.exists(CACHE_PATH): | |
os.makedirs(CACHE_PATH, exist_ok=True) | |
# FLUX ํ์ดํ๋ผ์ธ ๋ก๋ | |
pipe = FluxPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-dev", | |
torch_dtype=torch.bfloat16 | |
) | |
# LoRA ๊ฐ์ค์น ๋ก๋ | |
lora_path = hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors") | |
pipe.load_lora_weights(lora_path) | |
pipe.fuse_lora(lora_scale=0.125) | |
# GPU๋ก ์ฎ๊ธฐ๊ธฐ | |
pipe.to(device="cuda", dtype=torch.bfloat16) | |
####################################### | |
# 2. Google GenAI๋ฅผ ํตํ ์ด๋ฏธ์ง ๋ด ํ ์คํธ ๋ณํ ํจ์ | |
####################################### | |
def save_binary_file(file_name, data): | |
"""Google GenAI์์ ์๋ต๋ฐ์ ์ด์ง ๋ฐ์ดํฐ๋ฅผ ์ด๋ฏธ์ง ํ์ผ๋ก ์ ์ฅ""" | |
with open(file_name, "wb") as f: | |
f.write(data) | |
def generate_by_google_genai(text, file_name, model="gemini-2.0-flash-exp"): | |
""" | |
Google GenAI(gemini) ๋ชจ๋ธ์ ํตํด ์ด๋ฏธ์ง/ํ ์คํธ๋ฅผ ์์ฑํ๊ฑฐ๋ ๋ณํ. | |
- text: ๋ณ๊ฒฝํ ํ ์คํธ๋ ๋ช ๋ น์ด ๋ฑ ํ๋กฌํํธ | |
- file_name: ์๋ณธ ์ด๋ฏธ์ง(์: .png) ๊ฒฝ๋ก | |
- model: ์ฌ์ฉํ gemini ๋ชจ๋ธ ์ด๋ฆ | |
""" | |
# 1) Google Client ์ด๊ธฐํ | |
client = genai.Client(api_key=os.getenv("GAPI_TOKEN")) | |
# 2) ์ด๋ฏธ์ง ์ ๋ก๋ | |
files = [client.files.upload(file=file_name)] | |
# 3) gemini์ ์ ๋ฌํ Content ์ค๋น (์ด๋ฏธ์ง + ํ๋กฌํํธ) | |
contents = [ | |
types.Content( | |
role="user", | |
parts=[ | |
types.Part.from_uri( | |
file_uri=files[0].uri, | |
mime_type=files[0].mime_type, | |
), | |
types.Part.from_text(text=text), | |
], | |
), | |
] | |
# 4) ์์ฑ/๋ณํ ์ค์ | |
generate_content_config = types.GenerateContentConfig( | |
temperature=1, | |
top_p=0.95, | |
top_k=40, | |
max_output_tokens=8192, | |
response_modalities=["image", "text"], | |
response_mime_type="text/plain", | |
) | |
text_response = "" | |
image_path = None | |
# ์์ ํ์ผ๋ก ์ด๋ฏธ์ง ๋ฐ์ ์ค๋น | |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp: | |
temp_path = tmp.name | |
# 5) ์คํธ๋ฆผ ํํ๋ก ์๋ต ๋ฐ์์ ์ด๋ฏธ์ง/ํ ์คํธ ๊ตฌ๋ถ ์ฒ๋ฆฌ | |
for chunk in client.models.generate_content_stream( | |
model=model, | |
contents=contents, | |
config=generate_content_config, | |
): | |
if not chunk.candidates or not chunk.candidates[0].content or not chunk.candidates[0].content.parts: | |
continue | |
candidate = chunk.candidates[0].content.parts[0] | |
# inline_data๊ฐ ์์ผ๋ฉด ์ด๋ฏธ์ง ์๋ต | |
if candidate.inline_data: | |
save_binary_file(temp_path, candidate.inline_data.data) | |
print(f"File of mime type {candidate.inline_data.mime_type} saved to: {temp_path}") | |
image_path = temp_path | |
break # ์ด๋ฏธ์ง๊ฐ ์ค๋ฉด ์ฐ์ ๋ฉ์ถค | |
else: | |
# ์์ผ๋ฉด ํ ์คํธ๋ฅผ ๋์ | |
text_response += chunk.text + "\n" | |
# ์ ๋ก๋ ํ์ผ(google.genai.files.File) ๊ฐ์ฒด ์ ๊ฑฐ | |
del files | |
return image_path, text_response | |
####################################### | |
# 3. Gradio ํจ์: (1) FLUX๋ก ์ด๋ฏธ์ง ์์ฑ -> (2) Google GenAI๋ก ํ ์คํธ ๊ต์ฒด | |
####################################### | |
def generate_initial_image(prompt, text, height, width, steps, scale, seed): | |
""" | |
FLUX ํ์ดํ๋ผ์ธ์ ์ฌ์ฉํด 'ํ ์คํธ๊ฐ ํฌํจ๋ ์ด๋ฏธ์ง๋ฅผ' ๋จผ์ ์์ฑํ๋ ํจ์. | |
prompt: ์ด๋ฏธ์ง ๋ฐฐ๊ฒฝ/์ฅ๋ฉด/์คํ์ผ ๋ฌ์ฌ๋ฅผ ์ํ ํ๋กฌํํธ | |
text: ์ค์ ๋ก ์ด๋ฏธ์ง์ ๋ค์ด๊ฐ์ผ ํ ๋ฌธ๊ตฌ(์: "์๋ ํ์ธ์", "Hello world" ๋ฑ) | |
""" | |
# ์ด๋ฏธ์ง์ ํ ์คํธ๋ฅผ ํฌํจ์ํค๋ ค๋ฉด ํ๋กฌํํธ์ ์ง์ ๋ฌธ๊ตฌ ์์ฒญ์ ๋ฃ๋ ๊ฒ์ด ์ค์. | |
# Diffusion ๋ชจ๋ธ์ ๋ฐ๋ผ ์ ๋ฐ์๋์ง ์์ ์๋ ์์ผ๋, ๊ตฌ์ฒด์ ์ผ๋ก ๊ธฐ์ฌํ ์๋ก ์ ๋ฆฌ. | |
# ์: "A poster with large bold Korean text that says '์๋ ํ์ธ์' in red color ..." | |
# ์ฌ๊ธฐ์๋ ๊ฐ๋จํ prompt ๋ค์ ํ ์คํธ ์ฝ์ ์์๋ฅผ ๋ณด์ฌ์ค | |
combined_prompt = f"{prompt} with clear readable text that says '{text}'" | |
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): | |
result = pipe( | |
prompt=[combined_prompt], | |
generator=torch.Generator().manual_seed(int(seed)), | |
num_inference_steps=int(steps), | |
guidance_scale=float(scale), | |
height=int(height), | |
width=int(width), | |
max_sequence_length=256 | |
).images[0] | |
return result | |
def change_text_in_image(original_image, new_text): | |
""" | |
Google GenAI์ gemini ๋ชจ๋ธ์ ํตํด, | |
์ ๋ก๋๋ ์ด๋ฏธ์ง ๋ด๋ถ์ ๋ฌธ๊ตฌ๋ฅผ `new_text`๋ก ๋ณ๊ฒฝํด์ฃผ๋ ํจ์. | |
""" | |
try: | |
# ์์ ํ์ผ์ ๋จผ์ ์ ์ฅ | |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp: | |
original_path = tmp.name | |
original_image.save(original_path) | |
# Gemini ๋ชจ๋ธ ํธ์ถ | |
image_path, text_response = generate_by_google_genai( | |
text=f"Change the text in this image to: '{new_text}'", | |
file_name=original_path | |
) | |
# ๊ฒฐ๊ณผ๊ฐ ์ด๋ฏธ์ง๋ก ์๋ค๋ฉด | |
if image_path: | |
modified_img = gr.processing_utils.decode_base64_to_image( | |
base64.b64encode(open(image_path, "rb").read()) | |
) | |
return modified_img, "" # (๊ฒฐ๊ณผ ์ด๋ฏธ์ง, ๋น ํ ์คํธ) | |
else: | |
# ์ด๋ฏธ์ง๊ฐ ์์ด ํ ์คํธ๋ง ์๋ต์ผ๋ก ์จ ๊ฒฝ์ฐ | |
return None, text_response | |
except Exception as e: | |
raise gr.Error(f"Error: {e}") | |
####################################### | |
# 4. Gradio ์ธํฐํ์ด์ค ๊ตฌ์ฑ | |
####################################### | |
with gr.Blocks(title="Flux + Google GenAI Text Replacement") as demo: | |
gr.Markdown( | |
""" | |
# Flux ๊ธฐ๋ฐ ์ด๋ฏธ์ง ์์ฑ + Google GenAI๋ฅผ ํตํ ํ ์คํธ ๋ณํ | |
**์ด ๋ฐ๋ชจ๋ ์๋ ๋ ๋จ๊ณ๋ฅผ ๋ณด์ฌ์ค๋๋ค.** | |
1) **Diffusion ๋ชจ๋ธ(FluxPipeline)์ ์ด์ฉํด** ์ด๋ฏธ์ง ์์ฑ. | |
- ์ด๋, ์ฌ์ฉ์๊ฐ ์ง์ ํ ํ ์คํธ๋ฅผ ์ด๋ฏธ์ง ์์ ํ์ํ๋๋ก ์๋ํฉ๋๋ค. | |
2) **์์ฑ๋ ์ด๋ฏธ์ง๋ฅผ Google GenAI(gemini) ๋ชจ๋ธ์ ์ ๋ฌ**ํ์ฌ, | |
- ์ด๋ฏธ์ง ๋ด ํ ์คํธ ๋ถ๋ถ๋ง ๋ค๋ฅธ ๋ฌธ์์ด๋ก ๋ณ๊ฒฝ. | |
--- | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("## 1) Step 1: FLUX๋ก ํ ์คํธ ํฌํจ ์ด๋ฏธ์ง ์์ฑ") | |
prompt_input = gr.Textbox( | |
lines=3, | |
label="์ด๋ฏธ์ง ์ฅ๋ฉด/๋ฐฐ๊ฒฝ Prompt", | |
placeholder="์) A poster with futuristic neon style..." | |
) | |
text_input = gr.Textbox( | |
lines=1, | |
label="์ด๋ฏธ์ง ์์ ๋ค์ด๊ฐ ํ ์คํธ", | |
placeholder="์) ์๋ ํ์ธ์" | |
) | |
with gr.Accordion("๊ณ ๊ธ ์ค์ (ํ์ฅ)", open=False): | |
height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=512) | |
width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=512) | |
steps = gr.Slider(label="Inference Steps", minimum=6, maximum=25, step=1, value=8) | |
scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=5.0, step=0.1, value=3.5) | |
seed = gr.Number(label="Seed (reproducibility)", value=1234, precision=0) | |
generate_btn = gr.Button("Generate Base Image", variant="primary") | |
# ์์ฑ ๊ฒฐ๊ณผ ํ์ | |
generated_image = gr.Image( | |
label="Generated Image (with text)", | |
type="pil" | |
) | |
with gr.Column(): | |
gr.Markdown("## 2) Step 2: ์์ฑ๋ ์ด๋ฏธ์ง ๋ด ํ ์คํธ ์์ ") | |
new_text_input = gr.Textbox( | |
label="์๋ก ๋ฐ๊ฟ ํ ์คํธ", | |
placeholder="์) Hello world" | |
) | |
modify_btn = gr.Button("Change Text in Image via Gemini", variant="secondary") | |
output_img = gr.Image(label="Modified Image", type="pil") | |
output_txt = gr.Textbox(label="(If only text returned)") | |
# ๋ฒํผ ์ก์ ์ฐ๊ฒฐ | |
generate_btn.click( | |
fn=generate_initial_image, | |
inputs=[prompt_input, text_input, height, width, steps, scale, seed], | |
outputs=[generated_image] | |
) | |
modify_btn.click( | |
fn=change_text_in_image, | |
inputs=[generated_image, new_text_input], | |
outputs=[output_img, output_txt] | |
) | |
# ์ค์ ์คํ ์์๋ ์๋์ ๊ฐ์ด demo.launch()๋ฅผ ํธ์ถํฉ๋๋ค. | |
if __name__ == "__main__": | |
demo.queue(concurrency_count=1, max_size=20).launch() | |