File size: 10,177 Bytes
c9f9492
7fda6bb
c9f9492
3b3890c
 
 
 
e4aee44
d6f5800
96ceb67
 
d9915b1
08bac12
 
 
 
f5477de
 
08bac12
aa40f07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9915b1
 
 
b27d4ac
 
 
 
 
6f04473
 
 
 
 
c050c45
 
96ceb67
0b28249
 
 
 
6f04473
0b28249
6f04473
0b28249
 
 
a9522e9
0b28249
 
aa40f07
 
0b28249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96ceb67
c050c45
 
c9f9492
aa40f07
 
 
 
c9f9492
 
d6f5800
 
 
 
 
 
0b28249
 
6f04473
0b28249
 
d6f5800
 
d9915b1
6f04473
a9522e9
c050c45
6f04473
c050c45
 
d6f5800
 
b27d4ac
 
 
 
 
d9915b1
c050c45
b27d4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f04473
a9522e9
b27d4ac
 
 
a9522e9
6f04473
a9522e9
b27d4ac
 
 
 
d6f5800
b27d4ac
d6f5800
 
 
 
 
 
 
 
 
974d749
c050c45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9f9492
 
d6f5800
 
 
 
c9f9492
96ceb67
3b3890c
96ceb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b3890c
c9f9492
d6f5800
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import display_gloss as dg
import synonyms_preprocess as sp
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator 
from flask import Flask, render_template, Response, request, send_file
import io
import cv2
import numpy as np
import os
import requests
from urllib.parse import quote, unquote
import tempfile
import re

app = Flask(__name__, static_folder='static')
app.config['TITLE'] = 'Sign Language Translate'

nlp, dict_docs_spacy = sp.load_spacy_values()
dataset, list_2000_tokens = dg.load_data()

def clean_quotes(text):
    """따옴표 정리 함수"""
    # 연속된 따옴표 제거
    text = re.sub(r"'+", "'", text)
    # 단어 중간의 따옴표 제거
    text = re.sub(r"(\w)'(\w)", r"\1\2", text)
    return text

def normalize_quotes(text):
    """따옴표 형식을 정규화하는 함수"""
    # 먼저 모든 따옴표를 정리
    text = clean_quotes(text)
    
    # 한글 또는 영어 단어를 찾아서 처리
    pattern = r'([가-힣A-Za-z]+)'
    
    def process_match(match):
        word = match.group(1)
        # 이미 따옴표로 둘러싸인 경우는 처리하지 않음
        if not re.match(r"'.*'", word):
            return f"'{word}'"
        return word
    
    # 단어 단위로 처리
    words = text.split()
    processed_words = []
    
    for word in words:
        if re.search(pattern, word):
            # 이미 따옴표가 있는 경우는 그대로 두고, 없는 경우만 추가
            if not word.startswith("'") and not word.endswith("'"):
                word = f"'{word}'"
        processed_words.append(word)
    
    return ' '.join(processed_words)

def find_quoted_words(text):
    """작은따옴표로 묶인 단어들을 찾는 함수"""
    return re.findall(r"'([^']*)'", text)

def spell_out_word(word):
    """단어를 개별 알파벳으로 분리하는 함수"""
    return ' '.join(list(word.lower()))

def is_english(text):
    """텍스트가 영어인지 확인하는 함수"""
    english_pattern = re.compile(r'^[A-Za-z\s\'".,!?-]+$')
    return bool(english_pattern.match(text.replace("'", "")))

def translate_korean_to_english(text):
    """전체 텍스트 번역 함수"""
    try:
        # 입력 텍스트 정규화
        text = normalize_quotes(text)
        
        # 영어 입력 확인
        if is_english(text):
            return text

        # 따옴표로 묶인 단어들 찾기
        quoted_words = re.findall(r"'([^']*)'", text)
        translated_quoted = {}

        # 따옴표 안의 단어들 먼저 번역
        for word in quoted_words:
            if not word.strip():  # 빈 문자열 건너뛰기
                continue
            url = "https://translate.googleapis.com/translate_a/single"
            params = {
                "client": "gtx",
                "sl": "ko",
                "tl": "en",
                "dt": "t",
                "q": word
            }
            response = requests.get(url, params=params)
            if response.status_code == 200:
                translated = response.json()[0][0][0].upper()
                translated_quoted[word] = translated
                # 임시 마커로 대체
                text = text.replace(f"'{word}'", f"QUOTED_{len(translated_quoted)}_")

        # 전체 문장 번역
        params = {
            "client": "gtx",
            "sl": "ko",
            "tl": "en",
            "dt": "t",
            "q": text
        }
        response = requests.get(url, params=params)
        
        if response.status_code == 200:
            translated_text = ' '.join(item[0] for item in response.json()[0] if item[0])
            
            # 번역된 텍스트에서 마커를 번역된 단어로 대체
            for i, (original, translated) in enumerate(translated_quoted.items(), 1):
                translated_text = translated_text.replace(f"QUOTED_{i}_", f"'{translated}'")
            
            return translated_text
        else:
            raise Exception(f"Translation API returned status code: {response.status_code}")
    except Exception as e:
        print(f"Translation error: {e}")
        return text

@app.route('/')
def index():
    return render_template('index.html', title=app.config['TITLE'])

@app.route('/translate/', methods=['POST'])
def result():
    if request.method == 'POST':
        input_text = request.form['inputSentence'].strip()
        if not input_text:
            return render_template('error.html', error="Please enter text to translate")
        
        try:
            # 입력 텍스트 정규화
            input_text = normalize_quotes(input_text)
            
            # 번역 수행
            english_text = translate_korean_to_english(input_text)
            if not english_text:
                raise Exception("Translation failed")
            
            # 따옴표로 묶인 단어 추출
            quoted_words = [word.strip("'") for word in re.findall(r"'([^']*)'", english_text)]
            
            # ASL 변환을 위해 따옴표 제거
            clean_english = re.sub(r"'([^']*)'", r"\1", english_text)
            eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=clean_english)
            generated_gloss = eng_to_asl_translator.translate_to_gloss()
            
            # 단어 처리
            processed_gloss = []
            words = generated_gloss.split()
            
            for word in words:
                word_upper = word.upper()
                if any(quoted.upper() == word_upper for quoted in quoted_words):
                    # 고유명사인 경우 철자를 하나씩 분리
                    spelled_word = spell_out_word(word)
                    processed_gloss.extend(['FINGERSPELL-START'] + spelled_word.split() + ['FINGERSPELL-END'])
                else:
                    # 일반 단어는 기존 방식대로 처리
                    word_lower = word.lower()
                    if word_lower.isalnum():
                        processed_gloss.append(word_lower)
            
            gloss_sentence_before_synonym = " ".join(processed_gloss)
            
            # 고유명사가 아닌 단어들만 동의어 처리
            final_gloss = []
            i = 0
            while i < len(processed_gloss):
                if processed_gloss[i] == 'FINGERSPELL-START':
                    final_gloss.extend(processed_gloss[i:i+2])
                    i += 2
                    while i < len(processed_gloss) and processed_gloss[i] != 'FINGERSPELL-END':
                        final_gloss.append(processed_gloss[i])
                        i += 1
                    if i < len(processed_gloss):
                        final_gloss.append(processed_gloss[i])
                        i += 1
                else:
                    word = processed_gloss[i]
                    final_gloss.append(sp.find_synonyms(word, nlp, dict_docs_spacy, list_2000_tokens))
                    i += 1
            
            gloss_sentence_after_synonym = " ".join(final_gloss)
            
            return render_template('result.html',
                                title=app.config['TITLE'],
                                original_sentence=input_text,
                                english_translation=english_text,
                                gloss_sentence_before_synonym=gloss_sentence_before_synonym,
                                gloss_sentence_after_synonym=gloss_sentence_after_synonym)
        except Exception as e:
            return render_template('error.html', error=f"Translation error: {str(e)}")

def generate_complete_video(gloss_list, dataset, list_2000_tokens):
    try:
        frames = []
        is_spelling = False
        
        for gloss in gloss_list:
            if gloss == 'FINGERSPELL-START':
                is_spelling = True
                continue
            elif gloss == 'FINGERSPELL-END':
                is_spelling = False
                continue
                
            for frame in dg.generate_video([gloss], dataset, list_2000_tokens):
                frame_data = frame.split(b'\r\n\r\n')[1]
                nparr = np.frombuffer(frame_data, np.uint8)
                img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
                frames.append(img)
        
        if not frames:
            raise Exception("No frames generated")

        height, width = frames[0].shape[:2]
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        
        with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_file:
            temp_path = temp_file.name
            
        out = cv2.VideoWriter(temp_path, fourcc, 25, (width, height))
        
        for frame in frames:
            out.write(frame)
        out.release()
        
        with open(temp_path, 'rb') as f:
            video_bytes = f.read()
        
        os.remove(temp_path)
        return video_bytes
    except Exception as e:
        print(f"Error generating video: {str(e)}")
        raise

@app.route('/video_feed')
def video_feed():
    sentence = request.args.get('gloss_sentence_to_display', '')
    gloss_list = sentence.split()
    return Response(dg.generate_video(gloss_list, dataset, list_2000_tokens), 
                   mimetype='multipart/x-mixed-replace; boundary=frame')

@app.route('/download_video/<path:gloss_sentence>')
def download_video(gloss_sentence):
    try:
        decoded_sentence = unquote(gloss_sentence)
        gloss_list = decoded_sentence.split()
        
        if not gloss_list:
            return "No gloss provided", 400
            
        video_bytes = generate_complete_video(gloss_list, dataset, list_2000_tokens)
        
        if not video_bytes:
            return "Failed to generate video", 500
            
        return send_file(
            io.BytesIO(video_bytes),
            mimetype='video/mp4',
            as_attachment=True,
            download_name='sign_language.mp4'
        )
    except Exception as e:
        print(f"Download error: {str(e)}")
        return f"Error downloading video: {str(e)}", 500

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860, debug=True)