Spaces:
Building
Building
File size: 7,035 Bytes
c9f9492 7fda6bb c9f9492 3b3890c e4aee44 d6f5800 96ceb67 08bac12 f5477de 08bac12 b27d4ac 8ed001f d6f5800 96ceb67 d6f5800 8ed001f 3b3890c 96ceb67 b27d4ac 96ceb67 3b3890c c9f9492 d6f5800 c9f9492 d6f5800 b27d4ac d6f5800 b27d4ac d6f5800 974d749 c9f9492 d6f5800 c9f9492 96ceb67 3b3890c 96ceb67 3b3890c c9f9492 d6f5800 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import display_gloss as dg
import synonyms_preprocess as sp
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator
from flask import Flask, render_template, Response, request, send_file
import io
import cv2
import numpy as np
import os
import requests
from urllib.parse import quote, unquote
import tempfile
app = Flask(__name__, static_folder='static')
app.config['TITLE'] = 'Sign Language Translate'
nlp, dict_docs_spacy = sp.load_spacy_values()
dataset, list_2000_tokens = dg.load_data()
def is_proper_noun(word):
"""고유명사 여부를 확인하는 함수"""
return word[0].isupper() if word else False
def spell_out_word(word):
"""단어를 개별 알파벳으로 분리하는 함수"""
return ' '.join(list(word.lower()))
def translate_korean_to_english(text):
try:
url = "https://translate.googleapis.com/translate_a/single"
params = {
"client": "gtx",
"sl": "ko",
"tl": "en",
"dt": "t",
"q": text.strip()
}
response = requests.get(url, params=params)
if response.status_code == 200:
translated_text = ' '.join(item[0] for item in response.json()[0] if item[0])
return translated_text
else:
raise Exception(f"Translation API returned status code: {response.status_code}")
except Exception as e:
print(f"Translation error: {e}")
return text
def generate_complete_video(gloss_list, dataset, list_2000_tokens):
try:
frames = []
is_spelling = False
for gloss in gloss_list:
if gloss == 'FINGERSPELL-START':
is_spelling = True
continue
elif gloss == 'FINGERSPELL-END':
is_spelling = False
continue
for frame in dg.generate_video([gloss], dataset, list_2000_tokens):
frame_data = frame.split(b'\r\n\r\n')[1]
nparr = np.frombuffer(frame_data, np.uint8)
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
frames.append(img)
if not frames:
raise Exception("No frames generated")
height, width = frames[0].shape[:2]
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_file:
temp_path = temp_file.name
out = cv2.VideoWriter(temp_path, fourcc, 25, (width, height))
for frame in frames:
out.write(frame)
out.release()
with open(temp_path, 'rb') as f:
video_bytes = f.read()
os.remove(temp_path)
return video_bytes
except Exception as e:
print(f"Error generating video: {str(e)}")
raise
@app.route('/')
def index():
return render_template('index.html', title=app.config['TITLE'])
@app.route('/translate/', methods=['POST'])
def result():
if request.method == 'POST':
input_text = request.form['inputSentence'].strip()
if not input_text:
return render_template('error.html', error="Please enter text to translate")
try:
english_text = translate_korean_to_english(input_text)
if not english_text:
raise Exception("Translation failed")
eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=english_text)
generated_gloss = eng_to_asl_translator.translate_to_gloss()
# 단어 처리
processed_gloss = []
words = generated_gloss.split()
for word in words:
if is_proper_noun(word):
# 고유명사인 경우 철자를 하나씩 분리
spelled_word = spell_out_word(word)
processed_gloss.extend(['FINGERSPELL-START'] + spelled_word.split() + ['FINGERSPELL-END'])
else:
# 일반 단어는 기존 방식대로 처리
word_lower = word.lower()
if word_lower.isalnum():
processed_gloss.append(word_lower)
gloss_sentence_before_synonym = " ".join(processed_gloss)
# 고유명사가 아닌 단어들만 동의어 처리
final_gloss = []
i = 0
while i < len(processed_gloss):
if processed_gloss[i] == 'FINGERSPELL-START':
# 철자 처리 부분을 그대로 유지
final_gloss.append(processed_gloss[i])
i += 1
while i < len(processed_gloss) and processed_gloss[i] != 'FINGERSPELL-END':
final_gloss.append(processed_gloss[i])
i += 1
final_gloss.append('FINGERSPELL-END')
i += 1
else:
# 일반 단어는 동의어 처리
word = processed_gloss[i]
final_gloss.append(sp.find_synonyms(word, nlp, dict_docs_spacy, list_2000_tokens))
i += 1
gloss_sentence_after_synonym = " ".join(final_gloss)
return render_template('result.html',
title=app.config['TITLE'],
original_sentence=input_text,
english_translation=english_text,
gloss_sentence_before_synonym=gloss_sentence_before_synonym,
gloss_sentence_after_synonym=gloss_sentence_after_synonym)
except Exception as e:
return render_template('error.html', error=f"Translation error: {str(e)}")
@app.route('/video_feed')
def video_feed():
sentence = request.args.get('gloss_sentence_to_display', '')
gloss_list = sentence.split()
return Response(dg.generate_video(gloss_list, dataset, list_2000_tokens),
mimetype='multipart/x-mixed-replace; boundary=frame')
@app.route('/download_video/<path:gloss_sentence>')
def download_video(gloss_sentence):
try:
decoded_sentence = unquote(gloss_sentence)
gloss_list = decoded_sentence.split()
if not gloss_list:
return "No gloss provided", 400
video_bytes = generate_complete_video(gloss_list, dataset, list_2000_tokens)
if not video_bytes:
return "Failed to generate video", 500
return send_file(
io.BytesIO(video_bytes),
mimetype='video/mp4',
as_attachment=True,
download_name='sign_language.mp4'
)
except Exception as e:
print(f"Download error: {str(e)}")
return f"Error downloading video: {str(e)}", 500
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=True) |