Sign-language / src /synonyms_preprocess.py
Figea's picture
Upload synonyms_preprocess.py
fe1339d verified
raw
history blame
1.41 kB
import spacy
import pickle
from nltk.corpus import wordnet
def load_spacy_values(filepath_model_spacy='model_spacy_synonyms', filepath_docs_spacy = 'dict_spacy_object.pkl'):
nlp = spacy.load(filepath_model_spacy)
with open(filepath_docs_spacy, 'rb') as file:
dict_docs_spacy_bytes = pickle.load(file)
dict_docs_spacy = {key: spacy.tokens.Doc(nlp.vocab).from_bytes(doc_bytes) for key, doc_bytes in dict_docs_spacy_bytes.items()}
return nlp, dict_docs_spacy
def find_antonyms(word):
antonyms = set()
syn_set = wordnet.synsets(word)
for syn in syn_set:
for lemma in syn.lemmas():
if lemma.antonyms():
antonyms.add(lemma.antonyms()[0].name())
return antonyms
def find_synonyms(word, model, dict_embedding, dict_2000_tokens): #cluster_to_words, dbscan_model):
"""
This function finds the most similar word in the same cluster, and excludes antonyms
"""
antonyms = find_antonyms(word)
dict_2000_tokens_less_antonyms = [token for token in dict_2000_tokens if token not in antonyms]
word_embedding = model(word)
similarities=[]
for token in dict_2000_tokens_less_antonyms:
similarities.append((token, dict_embedding.get(token).similarity(word_embedding)))
most_similar_token = sorted(similarities, key=lambda item: -item[1])[0][0]
return most_similar_token