Spaces:
Building
Building
import display_gloss as dg | |
from NLP_Spacy_base_translator import NlpSpacyBaseTranslator | |
from flask import Flask, render_template, Response, request | |
app = Flask(__name__) | |
def index(): | |
return render_template('index.html') | |
def result(): | |
if request.method == 'POST': | |
sentence = request.form['inputSentence'] | |
eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=sentence) | |
generated_gloss = eng_to_asl_translator.translate_to_gloss() | |
gloss_list = generated_gloss.split() | |
print(gloss_list) | |
return render_template('translate.html', sentence=sentence, gloss_list=gloss_list) | |
def video_feed(): | |
sentence = request.args.get('sentence', '') | |
eng_to_asl_translator = NlpSpacyBaseTranslator(sentence=sentence) | |
generated_gloss = eng_to_asl_translator.translate_to_gloss() | |
gloss_list = [gloss.lower() for gloss in generated_gloss.split()] | |
print(f'video_feed gloss_list: {gloss_list}') | |
dataset, vocabulary_list = dg.load_data() | |
return Response(dg.generate_video(gloss_list, dataset, vocabulary_list), mimetype='multipart/x-mixed-replace; boundary=frame') | |
if __name__ == "__main__": | |
app.debug = True | |
app.run(host="0.0.0.0", port=5000, debug=True) | |