File size: 21,279 Bytes
9c0fa6e
 
 
6d34eee
 
 
 
 
9c0fa6e
 
6d34eee
 
9c0fa6e
6d34eee
9c0fa6e
 
 
f08e5c8
6d34eee
 
9c0fa6e
 
 
 
 
 
 
 
6d34eee
 
9c0fa6e
 
 
 
 
6d34eee
9c0fa6e
6d34eee
 
9c0fa6e
6d34eee
 
 
9c0fa6e
6d34eee
 
9c0fa6e
 
6d34eee
9c0fa6e
6d34eee
9c0fa6e
 
6d34eee
432e503
6d34eee
927c274
9c0fa6e
 
061dfbf
 
2d767e1
6d34eee
dbac20f
 
 
6d34eee
dbac20f
6d34eee
 
 
 
 
 
 
 
 
 
 
 
 
dbac20f
6d34eee
 
 
dbac20f
6d34eee
 
 
432e503
6d34eee
 
 
 
 
 
 
 
 
 
 
432e503
6d34eee
2d767e1
6d34eee
2d767e1
6d34eee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d767e1
6d34eee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc12ade
 
 
6d34eee
 
 
9c0fa6e
 
 
 
 
2d767e1
9c0fa6e
 
 
 
 
 
 
 
2d767e1
9c0fa6e
 
 
 
2d767e1
9c0fa6e
 
 
 
 
 
2d767e1
 
9c0fa6e
 
 
 
 
 
 
 
 
 
 
2d767e1
 
9c0fa6e
 
2d767e1
9c0fa6e
 
 
 
 
 
2d767e1
9c0fa6e
 
 
 
 
2d767e1
9c0fa6e
 
 
 
 
 
2d767e1
061dfbf
 
 
 
 
 
 
6d34eee
 
 
 
 
 
 
2d767e1
 
6d34eee
9c0fa6e
 
a82f1b3
a8f1b0d
 
a82f1b3
2d767e1
a8f1b0d
9c0fa6e
a8f1b0d
ee38f94
 
 
a8f1b0d
ee38f94
 
a8f1b0d
ee38f94
 
 
a8f1b0d
 
9c0fa6e
a8f1b0d
6d34eee
2d767e1
9c0fa6e
 
 
6d34eee
 
 
9c0fa6e
927c274
9c0fa6e
6d34eee
9c0fa6e
6d34eee
9c0fa6e
 
 
 
 
6d34eee
9c0fa6e
 
6d34eee
 
9c0fa6e
2d767e1
9c0fa6e
 
 
 
 
 
6d34eee
9c0fa6e
 
 
 
 
 
 
6d34eee
9c0fa6e
 
 
 
 
 
2d767e1
 
927c274
 
 
 
9c0fa6e
 
2d767e1
 
927c274
 
 
 
9c0fa6e
 
927c274
9c0fa6e
927c274
 
9c0fa6e
927c274
 
 
 
 
2d767e1
9c0fa6e
 
 
 
 
6d34eee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d767e1
6d34eee
2d767e1
9c0fa6e
2d767e1
6d34eee
9c0fa6e
6d34eee
 
927c274
9c0fa6e
 
2d767e1
061dfbf
 
9c0fa6e
6d34eee
 
061dfbf
 
6d34eee
9c0fa6e
 
6d34eee
 
 
 
 
9c0fa6e
6d34eee
 
 
9c0fa6e
2d767e1
6d34eee
 
9c0fa6e
 
 
 
 
 
6d34eee
9c0fa6e
6d34eee
9c0fa6e
6d34eee
9c0fa6e
6d34eee
9c0fa6e
dbac20f
 
2d767e1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import types
import random
import spaces
import logging
import os
from pathlib import Path
from datetime import datetime

import torch
import numpy as np
import torchaudio
from diffusers import AutoencoderKLWan, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from diffusers import AutoModel
import gradio as gr
import tempfile
from huggingface_hub import hf_hub_download

from src.pipeline_wan_nag import NAGWanPipeline
from src.transformer_wan_nag import NagWanTransformer3DModel

# MMAudio imports
try:
    import mmaudio
except ImportError:
    os.system("pip install -e .")
    import mmaudio

from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate as mmaudio_generate, 
                                load_video, make_video, setup_eval_logging)
from mmaudio.model.flow_matching import FlowMatching
from mmaudio.model.networks import MMAudio, get_my_mmaudio
from mmaudio.model.sequence_config import SequenceConfig
from mmaudio.model.utils.features_utils import FeaturesUtils

# NAG Video Settings
MOD_VALUE = 32
DEFAULT_DURATION_SECONDS = 4
DEFAULT_STEPS = 4
DEFAULT_SEED = 2025
DEFAULT_H_SLIDER_VALUE = 480
DEFAULT_W_SLIDER_VALUE = 832
NEW_FORMULA_MAX_AREA = 480.0 * 832.0

SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 129

DEFAULT_NAG_NEGATIVE_PROMPT = "Static, motionless, still, ugly, bad quality, worst quality, poorly drawn, low resolution, blurry, lack of details"
DEFAULT_AUDIO_NEGATIVE_PROMPT = "music"

# NAG Model Settings
MODEL_ID = "Wan-AI/Wan2.1-T2V-14B-Diffusers"
SUB_MODEL_ID = "vrgamedevgirl84/Wan14BT2VFusioniX"
SUB_MODEL_FILENAME = "Wan14BT2VFusioniX_fp16_.safetensors"
LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"

# MMAudio Settings
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
log = logging.getLogger()
device = 'cuda'
dtype = torch.bfloat16
audio_model_config: ModelConfig = all_model_cfg['large_44k_v2']
audio_model_config.download_if_needed()
setup_eval_logging()

# Initialize NAG Video Model
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
wan_path = hf_hub_download(repo_id=SUB_MODEL_ID, filename=SUB_MODEL_FILENAME)
transformer = NagWanTransformer3DModel.from_single_file(wan_path, torch_dtype=torch.bfloat16)
pipe = NAGWanPipeline.from_pretrained(
    MODEL_ID, vae=vae, transformer=transformer, torch_dtype=torch.bfloat16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=5.0)
pipe.to("cuda")

pipe.transformer.__class__.attn_processors = NagWanTransformer3DModel.attn_processors
pipe.transformer.__class__.set_attn_processor = NagWanTransformer3DModel.set_attn_processor
pipe.transformer.__class__.forward = NagWanTransformer3DModel.forward

# Initialize MMAudio Model
def get_mmaudio_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
    seq_cfg = audio_model_config.seq_cfg
    
    net: MMAudio = get_my_mmaudio(audio_model_config.model_name).to(device, dtype).eval()
    net.load_weights(torch.load(audio_model_config.model_path, map_location=device, weights_only=True))
    log.info(f'Loaded MMAudio weights from {audio_model_config.model_path}')
    
    feature_utils = FeaturesUtils(tod_vae_ckpt=audio_model_config.vae_path,
                                  synchformer_ckpt=audio_model_config.synchformer_ckpt,
                                  enable_conditions=True,
                                  mode=audio_model_config.mode,
                                  bigvgan_vocoder_ckpt=audio_model_config.bigvgan_16k_path,
                                  need_vae_encoder=False)
    feature_utils = feature_utils.to(device, dtype).eval()
    
    return net, feature_utils, seq_cfg

audio_net, audio_feature_utils, audio_seq_cfg = get_mmaudio_model()

# Audio generation function
@torch.inference_mode()
def add_audio_to_video(video_path, prompt, audio_negative_prompt, audio_steps, audio_cfg_strength, duration):
    """Generate and add audio to video using MMAudio"""
    rng = torch.Generator(device=device)
    rng.seed()  # Random seed for audio
    fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=audio_steps)
    
    video_info = load_video(video_path, duration)
    clip_frames = video_info.clip_frames
    sync_frames = video_info.sync_frames
    duration = video_info.duration_sec
    clip_frames = clip_frames.unsqueeze(0)
    sync_frames = sync_frames.unsqueeze(0)
    audio_seq_cfg.duration = duration
    audio_net.update_seq_lengths(audio_seq_cfg.latent_seq_len, audio_seq_cfg.clip_seq_len, audio_seq_cfg.sync_seq_len)
    
    audios = mmaudio_generate(clip_frames,
                              sync_frames, [prompt],
                              negative_text=[audio_negative_prompt],
                              feature_utils=audio_feature_utils,
                              net=audio_net,
                              fm=fm,
                              rng=rng,
                              cfg_strength=audio_cfg_strength)
    audio = audios.float().cpu()[0]
    
    # Create video with audio
    video_with_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
    make_video(video_info, video_with_audio_path, audio, sampling_rate=audio_seq_cfg.sampling_rate)
    
    return video_with_audio_path

# Combined generation function
def get_duration(prompt, nag_negative_prompt, nag_scale, height, width, duration_seconds, 
                 steps, seed, randomize_seed, enable_audio, audio_negative_prompt, 
                 audio_steps, audio_cfg_strength):
    # Calculate total duration including audio processing if enabled
    video_duration = int(duration_seconds) * int(steps) * 2.25 + 5
    audio_duration = 30 if enable_audio else 0  # Additional time for audio processing
    return video_duration + audio_duration

@spaces.GPU(duration=get_duration)
def generate_video_with_audio(
        prompt,
        nag_negative_prompt, nag_scale,
        height=DEFAULT_H_SLIDER_VALUE, width=DEFAULT_W_SLIDER_VALUE, duration_seconds=DEFAULT_DURATION_SECONDS,
        steps=DEFAULT_STEPS,
        seed=DEFAULT_SEED, randomize_seed=False,
        enable_audio=True, audio_negative_prompt=DEFAULT_AUDIO_NEGATIVE_PROMPT,
        audio_steps=25, audio_cfg_strength=4.5,
):
    # Generate video first
    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
    
    num_frames = np.clip(int(round(int(duration_seconds) * FIXED_FPS) + 1), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
    
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
    
    with torch.inference_mode():
        nag_output_frames_list = pipe(
            prompt=prompt,
            nag_negative_prompt=nag_negative_prompt,
            nag_scale=nag_scale,
            nag_tau=3.5,
            nag_alpha=0.5,
            height=target_h, width=target_w, num_frames=num_frames,
            guidance_scale=0.,
            num_inference_steps=int(steps),
            generator=torch.Generator(device="cuda").manual_seed(current_seed)
        ).frames[0]
    
    # Save initial video without audio
    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        temp_video_path = tmpfile.name
    export_to_video(nag_output_frames_list, temp_video_path, fps=FIXED_FPS)
    
    # Add audio if enabled
    if enable_audio:
        try:
            final_video_path = add_audio_to_video(
                temp_video_path, 
                prompt,  # Use the same prompt for audio generation
                audio_negative_prompt,
                audio_steps,
                audio_cfg_strength,
                duration_seconds
            )
            # Clean up temp video
            if os.path.exists(temp_video_path):
                os.remove(temp_video_path)
        except Exception as e:
            log.error(f"Audio generation failed: {e}")
            final_video_path = temp_video_path
    else:
        final_video_path = temp_video_path
    
    return final_video_path, current_seed

# Example generation function
def generate_with_example(prompt, nag_negative_prompt, nag_scale):
    video_path, seed = generate_video_with_audio(
        prompt=prompt,
        nag_negative_prompt=nag_negative_prompt, nag_scale=nag_scale,
        height=DEFAULT_H_SLIDER_VALUE, width=DEFAULT_W_SLIDER_VALUE, 
        duration_seconds=DEFAULT_DURATION_SECONDS,
        steps=DEFAULT_STEPS,
        seed=DEFAULT_SEED, randomize_seed=False,
        enable_audio=True, audio_negative_prompt=DEFAULT_AUDIO_NEGATIVE_PROMPT,
        audio_steps=25, audio_cfg_strength=4.5,
    )
    return video_path, \
        DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE, \
        DEFAULT_DURATION_SECONDS, DEFAULT_STEPS, seed, \
        True, DEFAULT_AUDIO_NEGATIVE_PROMPT, 25, 4.5

# Examples with audio descriptions
examples = [
    ["Midnight highway outside a neon-lit city. A black 1973 Porsche 911 Carrera RS speeds at 120 km/h. Inside, a stylish singer-guitarist sings while driving, vintage sunburst guitar on the passenger seat. Sodium streetlights streak over the hood; RGB panels shift magenta to blue on the driver. Camera: drone dive, Russian-arm low wheel shot, interior gimbal, FPV barrel roll, overhead spiral. Neo-noir palette, rain-slick asphalt reflections, roaring flat-six engine blended with live guitar.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
    ["Arena rock concert packed with 20 000 fans. A flamboyant lead guitarist in leather jacket and mirrored aviators shreds a cherry-red Flying V on a thrust stage. Pyro flames shoot up on every downbeat, CO₂ jets burst behind. Moving-head spotlights swirl teal and amber, follow-spots rim-light the guitarist’s hair. Steadicam 360-orbit, crane shot rising over crowd, ultra-slow-motion pick attack at 1 000 fps. Film-grain teal-orange grade, thunderous crowd roar mixes with screaming guitar solo.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
    ["Golden-hour countryside road winding through rolling wheat fields. A man and woman ride a vintage café-racer motorcycle, hair and scarf fluttering in the warm breeze. Drone chase shot reveals endless patchwork farmland; low slider along rear wheel captures dust trail. Sun-flare back-lights the riders, lens blooms on highlights. Soft acoustic rock underscore; engine rumble mixed at –8 dB. Warm pastel color grade, gentle film-grain for nostalgic vibe.", DEFAULT_NAG_NEGATIVE_PROMPT, 11],
]

# CSS styling
css = """
.container {
    max-width: 1400px;
    margin: auto;
    padding: 20px;
}
.main-title {
    text-align: center;
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
    font-size: 2.5em;
    font-weight: bold;
    margin-bottom: 10px;
}
.subtitle {
    text-align: center;
    color: #6b7280;
    margin-bottom: 30px;
}
.prompt-container {
    background: linear-gradient(135deg, #f3f4f6 0%, #e5e7eb 100%);
    border-radius: 15px;
    padding: 20px;
    margin-bottom: 20px;
    box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.generate-btn {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    color: white;
    font-size: 1.2em;
    font-weight: bold;
    padding: 15px 30px;
    border-radius: 10px;
    border: none;
    cursor: pointer;
    transition: all 0.3s ease;
    width: 100%;
    margin-top: 20px;
}
.generate-btn:hover {
    transform: translateY(-2px);
    box-shadow: 0 6px 20px rgba(102, 126, 234, 0.4);
}
.video-output {
    border-radius: 15px;
    overflow: hidden;
    box-shadow: 0 10px 30px rgba(0, 0, 0, 0.2);
    background: #1a1a1a;
    padding: 10px;
}
.settings-panel {
    background: #f9fafb;
    border-radius: 15px;
    padding: 20px;
    box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05);
}
.slider-container {
    background: white;
    padding: 15px;
    border-radius: 10px;
    margin-bottom: 15px;
    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
}
.info-box {
    background: linear-gradient(135deg, #e0e7ff 0%, #c7d2fe 100%);
    border-radius: 10px;
    padding: 15px;
    margin: 10px 0;
    border-left: 4px solid #667eea;
}
.audio-settings {
    background: linear-gradient(135deg, #fef3c7 0%, #fde68a 100%);
    border-radius: 10px;
    padding: 15px;
    margin-top: 10px;
    border-left: 4px solid #f59e0b;
}
"""

# Gradio interface
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    with gr.Column(elem_classes="container"):
        gr.HTML("""
            <h1 class="main-title">🎬 VEO3 Free</h1>
            <p class="subtitle">Wan2.1-T2V-14B + Fast 4-step with NAG + Automatic Audio Generation</p>
        """)
        

        gr.HTML("""
        <div class="badge-container">

            <a href="https://huggingface.co/spaces/ginigen/VEO3-Free" target="_blank">
                <img src="https://img.shields.io/static/v1?label=Text%20to%20Video%2BAudio&message=VEO3%20free&color=%230000ff&labelColor=%23800080&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
            </a>
            <a href="https://huggingface.co/spaces/ginigen/VEO3-Free-mirror" target="_blank">
                <img src="https://img.shields.io/static/v1?label=Text%20to%20Video%2BAudio&message=VEO3%20free%28mirror%29&color=%230000ff&labelColor=%23800080&logo=huggingface&logoColor=%23ffa500&style=for-the-badge" alt="badge">
            </a>

            <a href="https://discord.gg/openfreeai" target="_blank">
                <img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=%23ffa500&style=for-the-badge" alt="badge">
            </a>
        </div>
        """)

        
        with gr.Row():
            with gr.Column(scale=1):
                with gr.Group(elem_classes="prompt-container"):
                    prompt = gr.Textbox(
                        label="✨ Video Prompt (also used for audio generation)",
                        placeholder="Describe your video scene in detail...",
                        lines=3,
                        elem_classes="prompt-input"
                    )
                    
                    with gr.Accordion("🎨 Advanced Video Settings", open=False):
                        nag_negative_prompt = gr.Textbox(
                            label="Video Negative Prompt",
                            value=DEFAULT_NAG_NEGATIVE_PROMPT,
                            lines=2,
                        )
                        nag_scale = gr.Slider(
                            label="NAG Scale",
                            minimum=1.0,
                            maximum=20.0,
                            step=0.25,
                            value=11.0,
                            info="Higher values = stronger guidance"
                        )
                
                with gr.Group(elem_classes="settings-panel"):
                    gr.Markdown("### ⚙️ Video Settings")
                    
                    with gr.Row():
                        duration_seconds_input = gr.Slider(
                            minimum=1,
                            maximum=8,
                            step=1,
                            value=DEFAULT_DURATION_SECONDS,
                            label="📱 Duration (seconds)",
                            elem_classes="slider-container"
                        )
                        steps_slider = gr.Slider(
                            minimum=1,
                            maximum=8,
                            step=1,
                            value=DEFAULT_STEPS,
                            label="🔄 Inference Steps",
                            elem_classes="slider-container"
                        )
                    
                    with gr.Row():
                        height_input = gr.Slider(
                            minimum=SLIDER_MIN_H,
                            maximum=SLIDER_MAX_H,
                            step=MOD_VALUE,
                            value=DEFAULT_H_SLIDER_VALUE,
                            label=f"📐 Height (×{MOD_VALUE})",
                            elem_classes="slider-container"
                        )
                        width_input = gr.Slider(
                            minimum=SLIDER_MIN_W,
                            maximum=SLIDER_MAX_W,
                            step=MOD_VALUE,
                            value=DEFAULT_W_SLIDER_VALUE,
                            label=f"📐 Width (×{MOD_VALUE})",
                            elem_classes="slider-container"
                        )
                    
                    with gr.Row():
                        seed_input = gr.Slider(
                            label="🌱 Seed",
                            minimum=0,
                            maximum=MAX_SEED,
                            step=1,
                            value=DEFAULT_SEED,
                            interactive=True
                        )
                        randomize_seed_checkbox = gr.Checkbox(
                            label="🎲 Random Seed",
                            value=True,
                            interactive=True
                        )
                
                with gr.Group(elem_classes="audio-settings"):
                    gr.Markdown("### 🎵 Audio Generation Settings")
                    
                    enable_audio = gr.Checkbox(
                        label="🔊 Enable Automatic Audio Generation",
                        value=True,
                        interactive=True
                    )
                    
                    with gr.Column(visible=True) as audio_settings_group:
                        audio_negative_prompt = gr.Textbox(
                            label="Audio Negative Prompt",
                            value=DEFAULT_AUDIO_NEGATIVE_PROMPT,
                            placeholder="Elements to avoid in audio (e.g., music, speech)",
                        )
                        
                        with gr.Row():
                            audio_steps = gr.Slider(
                                minimum=10,
                                maximum=50,
                                step=5,
                                value=25,
                                label="🎚️ Audio Steps",
                                info="More steps = better quality"
                            )
                            audio_cfg_strength = gr.Slider(
                                minimum=1.0,
                                maximum=10.0,
                                step=0.5,
                                value=4.5,
                                label="🎛️ Audio Guidance",
                                info="Strength of prompt guidance"
                            )
                    
                    # Toggle audio settings visibility
                    enable_audio.change(
                        fn=lambda x: gr.update(visible=x),
                        inputs=[enable_audio],
                        outputs=[audio_settings_group]
                    )
                
                generate_button = gr.Button(
                    "🎬 Generate Video with Audio",
                    variant="primary",
                    elem_classes="generate-btn"
                )
            
            with gr.Column(scale=1):
                video_output = gr.Video(
                    label="Generated Video with Audio",
                    autoplay=True,
                    interactive=False,
                    elem_classes="video-output"
                )
                
                gr.HTML("""
                    <div style="text-align: center; margin-top: 20px; color: #6b7280;">
                        <p>💡 Tip: The same prompt is used for both video and audio generation!</p>
                        <p>🎧 Audio is automatically matched to the visual content</p>
                    </div>
                """)
        
        gr.Markdown("### 🎯 Example Prompts")
        gr.Examples(
            examples=examples,
            fn=generate_with_example,
            inputs=[prompt, nag_negative_prompt, nag_scale],
            outputs=[
                video_output,
                height_input, width_input, duration_seconds_input,
                steps_slider, seed_input,
                enable_audio, audio_negative_prompt, audio_steps, audio_cfg_strength
            ],
            cache_examples="lazy"
        )
    
    # Connect UI elements
    ui_inputs = [
        prompt,
        nag_negative_prompt, nag_scale,
        height_input, width_input, duration_seconds_input,
        steps_slider,
        seed_input, randomize_seed_checkbox,
        enable_audio, audio_negative_prompt, audio_steps, audio_cfg_strength,
    ]
    
    generate_button.click(
        fn=generate_video_with_audio,
        inputs=ui_inputs,
        outputs=[video_output, seed_input],
    )

if __name__ == "__main__":
    demo.queue().launch()